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Abstract  
 
Computerized testing is widely used for diagnostics and estimation of professional skills including CM edu-

cation quality control. Both quality of testing and reliability of its results depend on a selected test technolo-

gy that was a scientific research object during last years. Numerous problems following applications of tra-

ditional testing techniques inspired creation of the adaptive testing technology under consideration, which is 

based on application of trained structures in the form of continuous-time Markov models. Its peculiarities, in 

particular, are revealing and using test solution capability changes in quantitative evaluation of their time-

domain dynamics as well as taking into account timetable of testing process. The approach suggested has 

certain advantages over the testing techniques, which were used before, owing to its greater information ca-

pability and acceleration of a test procedure. The main subject under consideration is elimination of artifacts 

conditioned by certain forms of illegal purposeful interference in testing procedure. It is carried out on the 

basis of comparing observed and expected subject responses with the aid of the Kalman filter adapted to the 

peculiarities of the problem in question.    

 

__________________ 
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1. INTRODUCTION 
 

Nowadays computer testing is widely used in medicine, psychology and education for diagnostics 

and estimation of professional skill level for different activities. That includes also important appli-

cations in education quality control. Both quality of testing and reliability of its results strongly de-

pend on a selected technology, which became an object of active scientific research last years.  

At first tests were developed on the basis of the classical test theory
[2,15,18,19]

 borrowed from 

physics. This theory assumes that measured characteristics have some “true” values distorted by 

random and system errors. This approach was quite popular but has a series of significant defects 

preventing its practical applications: 

− The problems appear when comparing similar peculiarities of tested subjects, which are 

revealed with the aid of different methods 

− The validity problem is not solved 

− Test points become insufficiently reliable in the ranges of extreme values 

− The method itself is insufficiently reliable and universal. 

A new testing technology was developed to overcome the stated problems. It is based on the 

latent-structural analysis
[4]

 and called the Item Response Theory (IRT)
[15,17]

. The adaptive testing 

concept is implemented in this theory, according to which a tested subject gets the calculated tasks 

of certain difficulty that depends on his current skill level estimation at each step of the testing pro-

cedure.  The main concept of this new theory was proposed by G. Rash in 1960
[26]

.  It assumes that  
© L.S. Kuravsky, G.A. Yuryev, 2011.  
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probability of the correct answer for a task is determined by the difference of skill level and test dif-

ficulty. Depending on the application problem conditions, practically used are also other models 

which are more complicated and built on the given concept basis
[1,26,28,29]

.  

Application of this technology results in some problems: 

− “Static” nature of estimates, viz.: ignoring the essential changes of subject characteristics 

under study during testing procedure, which may become apparent owing to influence of 

tiredness and other factors  

− Time spent on solving tasks has no influence on skill estimation   

− A subject needs to solve rather great number of test tasks to get sufficient accuracy of 

skill estimation   

− Difficulty of calculating probability distributions of possible test results that is necessary 

for evaluating their reliability 

− Procedure of estimating result accuracy, which entails application of both the maximum 

likelihood method and calculation of confidence intervals and, as a result, is compara-

tively difficult for practical implementation. 

The indicated problems make development of new testing technologies topical. Under con-

sideration in this paper are new aspects of application of the approach to adaptive testing 
[4-11,20-25]

, 

which was developed by the authors before and is based on application of trained structures in the 

form of discrete- and continuous-time Markov models. Its main features are: 

− Revealing and using temporal dynamics of ability to solve test tasks in constructing es-

timates 

− Possibility of taking the time spent on solution of test tasks into account in constructing 

estimates   

− Possibility of studying temporal skill dynamics in both discrete and continuous time 

scales   

− The number of tasks, which should be put to the subjects to obtain estimates of their 

skills with a given accuracy, are less than in case of other approaches, with the testing 

process being accelerated  

− Obtaining the probability distribution of possible test results as the outcome 

− Advanced technique of identifying model parameters. 

The indicated facilities provide for advantages of the new approach over currently used 

similar testing techniques.  

One of the most serious problems arising from the testing process is appearance of artifacts 

in history of subject responses, which distort testing results. These artifacts are conditioned by outer 

hints, guessing and other forms of illegal purposeful interference in testing procedure. The present-

ed adaptive testing technology makes it possible to fight against these effects, with eliminating arti-

facts on the basis of comparing observed and expected subject responses for different skill levels. 

The Kalman filter
[14, 16]

 that is a non-stationary feedback system including a forming filter reproduc-

ing the ideal behavior model is suggested here as a tool for such a comparison.    

Selection of the Kalman filter for testing artifact elimination is optimal choice since it meets 

both the accepted adaptive testing concept and relevant context of use better than competitive ap-

proaches. In particular, this filter:   

− in contrast to the Wiener filter, can process current information on subject response in 

real time, forming its output after getting next answer immediately without full testing 

protocol that is not available until completing all the answering procedure  

− in contrast to the Stratonovich filter, applies linear estimation methods only, which meet 

the linear differential adaptive testing model in use best of all and do not complicate the 

solution process groundlessly    

− in contrast to the Luenberger filter, takes into account observation errors and ensures op-

timal estimation.         
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Presented in this paper are a new adaptive testing approach based on application of trained 

structures in the form of continuous-time Markov models, formulation of the artifact Kalman filtra-

tion problem and peculiarities of its solution.   

 

2. MARKOV MODELS OF ADAPTIVE TESTING    

 

2.1. Structure and mathematical description of Markov models in use. Proce-

dure of skill level estimation   
 

Estimation of probabilities for various skill levels is performed basing on test results obtained with 

the aid of parametric mathematical models described by Markov random processes with discrete 

states and continuous or discrete time
[12,13]

. Further discussion applies to the models with continu-

ous time only. Directly observable quantity is the difficulty of task being executed, measured in 

logit. The valid range of this quantity is divided into several intervals, each of them is considered as 

a separate state xi, i=0,1,…,n, in which a testee may be with certain probability, transferring from 

one state to another according to certain rules. The length of these intervals determines the discrim-

ination of estimates obtained in the testing process. In turn, the number of states is determined by 

the desired discrimination of estimates and available sample size
1
.  

Both task difficulties and subject’ skills are measured in a common dimensionless logit scale 

that represents the ratio of correct and incorrect answers. Conversion to the logit scale is determined 

by the formula: 

r1

r
lnC


 , 

 

where С is the required value of the logit scale, r is probability of correct task performance. In case 

of difficulty assessing this parameter describes the possibility of performance of a certain task for 

the entire set of subjects and in case of measuring skills - the results of a certain subject for the en-

tire set of admissible tasks. Statistical approximations of the given quantities are obtained after re-

placing probability r by its sample estimates in this formula.   

If we denote the upper and lower limits of possible difficulty range as Dbot and Dtop, the state 

x0 will correspond to the interval from Dbot to Dbot+(Dtop–Dbot)/(n+1), state x1 – will correspond to 

the interval from Dbot+(Dtop–Dbot)/(n+1) to Dbot+2(Dtop–Dbot)/(n+1), and so on.  

Models which describe the dynamics of these transitions are directed graphs, where nodes
2
 

correspond to states and arcs
3
  correspond to transitions. 

In case of models with continuous time the testing process can be regarded as a random 

walk on a graph with transitions from one state to another following the arc’s directions. These 

transitions are instantaneous and occur at random moments. 

It is assumed that they meet the following two properties of Poisson flows of events: 

− Ordinary (the flow is called ordinary if the probability for occurrence of two or more events 

during a short time interval is much less than the probability for occurrence of one event 

during the same period) 

− Independence of the increments (this property means that numbers of events falling into two 

disjoint intervals are independent on each other). 

                                                 
1
 Considering continuously changing parameter as discrete value we loss a portion of information (it occurs 

at any idealization). But these losses are insignificant in case of large sample sets when we can set state in-

terval length to be less than measurement error.    
2
 Denoted as rectangles. 

3
 Denoted as arrows. 



Probabilistic artifact filtration in adaptive testing 

 

73 

 

 

It can be shown that the number of events X that fall at any time interval of length , begin-

ning at the time t, is distributed according to the Poisson law in the considered flows: 

   t,τa
m

t,τ e
m!

t,τa
m)(XP  , 

 

where Pt, (X = m) is probability of occurrence of m events during the considered interval, a(t,) is 

the average number of events falling at the interval of length , beginning at the moment t. Next we 

will consider only stationary flows (where a(t,)=, =const). Parameter  is called the rate of a 

stationary flow. It is equal to the mean number of events per a time unit. The mean time between 

two adjacent events is 1/  in this case. 

The aforementioned assumptions concerning the nature of event flows are usual for applica-

tions as these flows (or flows which close to them) are frequently take place in reality because of 

limit theorems for events
[12,13]

. 

For continuous-time models, unknown (free) model parameters are events’ flow rates. Their 

values are identified by means of comparing the observed and expected histograms describing the 

distributions of frequencies for being in the model states, viz.: computed are the rates that provide 

the best fit for observed and expected frequencies of falling into certain model states at the given 

time points, in which observed data are available. Expected state probabilities are calculated by in-

tegrating the sets of Kolmogorov equations numerically. 

Continuous-time Markov models in which free parameters are identified using observation 

data are called Markov networks
[5,7,21-23]

. 

To describe how the probabilities of being at the given states vary with time, Markov net-

works and chains organized according to the so-called "death and propagation" scheme
4
 are applied 

(Figure 1). This scheme is a finite succession of n+1 states, in which transitions from state xk (k0, 

kn) are possible only to the previous state xk-1 or to the next state xk+1. From states x0 and xn only 

states x1 and xn-1 are available, correspondingly.  

 

 

 

 

 

 

 

 

 

 

Probability dynamics of being in various model states for the given scheme is described by 

the following set of the Kolmogorov ordinary differential equations: 

                                                 
4
 This scheme was applied firstly in biology to analyze the dynamics of population growth. 

 

… 

n k+1 k 1 

n-1 k k-1 0 

x0 x1 xk-1 xk xk+1 xn-1 xn … 

Figure 1. Markov network representing a continuous-time testing process:  

xi (i=0,1,…,n) are the states, i (i=0,1,…,n-1) и i (i=1,2,…,n) are flow rates. 



Modelling and data analysis, 2012, No 1 

 

74 

 

 

),()(
)(

.................................................

);,...,,(

)()()()(
)(

.................................................

);()(
)(

tptp
dt

tdp

nk

tptptp
dt

tdp

tptp
dt

tdp

nnnn
n

kkkkkkk
k

11

1111

1100
0

121



















 

 

where p*(t) are probabilities of being in states x* at time t; * is a state number; i (i=0,1,…,n-1) 

and i (i=1,2,…,n) are flow rates between the states, which are determined separately for each of 

the skill levels under consideration. To integrate these equations, one has to assign initial condi-

tions: p0(0), p1(0),…, pn(0). The normalization condition  



n

k
k tp

0

1  is valid at any time point.  

To simplify the problem and ensure acceptable identification procedure, the flow rates are 

often assumed to depend on index i according to certain rules, including a trivial variant: 

0=1=…=n-1= and 1=2=…=n=. Optimal choice of these dependences is based on the 

technique of statistical hypotheses testing. In case of discrete-time models, similar dependences are 

revealed for the transition probabilities.  

The procedure of adaptive testing for both model types consists in successive presentation of 

tasks to a subject, with their difficulty being determined by the state of Markov network, where this 

subject is at the moment. If the subject being in state xi completes the task successfully, he goes into 

state xi+1, otherwise - into state xi-1. Upon completion of testing procedure the subject finds himself 

in one of states x*, which meet his skill level best of all. The principle of selecting a next task is to 

take the test item, whose difficulty meets approximately the current estimation of subject skill. Ac-

cording to the performed studies and modern test theory results, this ensures the best differentiation 

of subjects in terms of their abilities. 

 

2.2. Identification of continuous-time Markov models 
 

Identifications of Markov models are carried out separately for samples of subjects for each of the 

considered skill levels. Every skill level Ci, i=1,…,I, has its own unique set of model parameters 

estimates. These sets allow later to identify the skill level that meets observations data best of all. 

Thus, transition probabilities and flow rates are functions of two characteristics: skill level and task 

difficulty. Number of skill levels is a discrete parameter, which specifies the estimation discrimina-

tion for a given characteristic. It is selected for each application problem according to an available 

subjects’ sample size and desired result accuracy.  

A discrete-state Markov process is attributed to each time-varying histogram of being in 

model states. The Pearson statistics  







n

0k k

2
kk2

Np

N)p(F
X ,  

 

where N is sample size, pk is expected probability of being at the k-th model state, and Fk is  ob-

served frequency of being in k-th model state, is used as a goodness-of-fit measure in the sense that 

its large values correspond to bad fit and its small values correspond to good fit. For model identifi-
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cation, the sum of these statistics is minimized in those time points, at which the observation data 

are available. Observed numbers of hits at different intervals of task difficulty result from testing. 

The values yielding the best fit of observed and expected frequencies of falling into certain system 

states at the given time points are considered as required estimates of free model parameters.  

It has been proven that under some common conditions the values of the Pearson statis-

tics X2
 obtained after true solution substitution are asymptotically described by 2 

distribution 

with n-l degrees of freedom, where l is the number of parameters to be determined.  Moreover, the 

calculated values of free parameters converge in probability to the target solution with  the in-

crease of sample size 
[3, pp.462-470]

. This allows applying the given statistics for verifying the hy-

pothesis that the obtained forecast fits the observation data. The given way of identifying free 

model parameters is called the method of χ2
 minimum

[3]
. It yields solutions which are close to those 

obtained by the maximum likelihood technique
[3, pp.461-462]

. 

In case of continuous-time models the employed identification procedure consists of two 

stages. At the preparatory stage, some numerical integration scheme for the aforementioned differ-

ential equations is coded with a spreadsheet to calculate the probability functions pk 
[5,7,21]

. These 

functions are computed with a given time step. Runge-Kutta methods and their equivalents proved 

to be sufficient to get acceptable accuracy of solution.  

 At the final stage, a numerical procedure of multidimensional nonlinear optimization
5
 
[5,7,21] 

to get required values of free parameters is run. Obtained estimates are considered as model charac-

teristics revealed by the observations. Also the presented criterion allows to compare different vari-

ants of Markov models, selecting the best one.  

 

2.3. Calculation of the optimal solution 
 

Knowing a model state, in which the subject is after solving the last task, and calculating the proba-

bility of being in this state at the given time for each of the considered skill levels using differential 

dependencies (see Section 2.1) one can estimate the probabilities of being in the obtained final state 

with the aid of the Bayes’ formula:  





I

1k

kk

ii
i

))P(S|CP(C

))P(S|CP(C
|S)P(C , 

 

where Сi  is the event of having the i-th subject’s skill level (i=1,…,I), S  is the event of being in 

the given final model state, P(Ci)  is a priori probability of the i-th subject’ skill level, P(S|Ci ) is 

probability of being in the given final model state in case of the i-th skill level, P(Ci|S) is probabil-

ity of the i-th skill level in case of being in the given final model state. 

The skill level at which the largest conditional probability is reached 
 

1,...,Iii
i

max |S)}{P(Cmax|S)P(C  , 

 

yields the required estimate. Probability distribution 1,...,Iii|S)}{P(C   obtained as a result of the 

problem solution makes it possible to evaluate the reliability of this optimal estimate.  

As shown in Section 2.1, discrimination of the given estimation is determined by the length 

of the logit interval between the corresponding adjacent skill levels, which, in its turn, results from 

the number of skill levels I on the assumption of constancy of such intervals.   

                                                 
5
 A lot of software for numerical optimization is available now. In particular, users of the Excel spreadsheet 

can apply Frontline Systems, Inc. programs.  
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3. MATHEMATICAL FORMULATION AND SOLUTION OF THE 

KALMAN FILTRATION PROBLEM IN ADAPTIVE TESTING WITH 

MARKOV MODELS IN USE    
 

In case of the adaptive testing variant in question an observed process represents the history of be-

ing in Markov models’ states. It is expressed by the vector x(t)=(x0(t),x1(t),…,xn(t))
T
, in which at 

every time point one and only one of components xi(t), i=0,…,n, that corresponds to the state, 

where a tested subject is situated, equals to unity, with other components being equal to zero. In its 

turn, the information process P(t)=(p0(t),p1(t),…,pn(t))
T
 under study represents the probability dy-

namics of being in model states.  

Equations of the information and observed processes, which are used for construction of the 

multivariate continuous Kalman filter for the model type
6
 under consideration, can be given in the 

following way 
[14, 16]

:  

FP
P


dt

d
, 

 

x(t)=P(t)+v(t), 
 

where the restrictions E(v(t))=0 and E(v(t)v
T
())=R(t–) are imposed on the random observa-

tion errors v(t), the forming filter matrix F of dimension (n+1)(n+1) is   
 













































n1n

n1n1n2n

1kkk1k

2110

10

μλ...00

μ)μ(λλ..00

.......

00μ)μ(λλ.0

.......

00..μ)μ(λλ

00...μλ

, 

 

R is a symmetric positive-definite matrix, which is supposed further as time-independent one. In 

practical calculations this matrix can be substituted with one of its sampling estimations R̂  

obtained for each of the considered skill levels using observation results.  

 The Kalman filter differential equation that determines the unbiased estimator 

 tP̂ =       Tn tptptp ˆ,...,ˆ,ˆ
10 of the process under study

7
 with minimum mean square of error 

e(t)=P(t)–  tP̂ , is represented as  
 

 
        tttt

dt

td
PxKPF

P
c

ˆˆ
ˆ

 , 

 

where Kc(t) is the matrix amplification factor of a Kalman filter.   

 

In the classical case this factor is given by the equation    
 

                                                 
6
 Peculiarities of these models are: absence of information noise, equality of dimensions for information and observa-

tion processes, unity observation matrix.  
7
 Kalman filter output.  
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Kc(t)=U(t)R
-1

, 
 

in which the error covariance matrix U(t)=E(e(t)e
T
(t)) is solution of a certain matrix form of the 

Riccati equation:  
 

 
       tttt

dt

td T
URUFUFU

U 1 . 

 

However, as components of the information process estimation  tP̂  in the problem under consider-

ation are standardized magnitudes (sum of probabilities of being in the states of a Markov network 

equals to unity), correction of the amplification factor Kc(t) is necessary to meet this condition at 

any time point.  

If the normalization condition  



n

k

k tp
0

1ˆ  is valid at the initial time point t=0 and the right 

part of the Kalman filter equation ensures the equality 
 

0
ˆ

0




n

k

k

dt

tpd
 when t0, the given normali-

zation condition is valid at any time point t0. It is obvious that the condition 
 

0
ˆ

0




n

k

k

dt

tpd
 is 

equivalent to zero elements’ sum of the vector specified by the matrix expression 

        tttt PxKPF c
ˆˆ  . Since zero elements’ sum of the vector  tPF ˆ  results from the afore-cited 

structure of the matrix F, zero elements’ sum of the vector       ttt PxKc
ˆ  is necessary and suffi-

cient for zero elements’ sum of all the given matrix expression.  

Elements’ sum of the vector    tt Px ˆ  equals to zero according to conditions of the prob-

lem under consideration as components of the above-mentioned vectors are interpreted as probabili-

ties. Taking this fact into account, it is easy to prove that equality of all column elements’ sums of 

the matrix Kc(t) is sufficient condition for zero elements’ sum of the vector       ttt PxKc
ˆ . 

Therefore, if one replaces the matrix amplification factor Kc(t) in the Kalman filter equation by the 

standardized factor Kn(t) that is close to it in some metric and has column elements’ sums, which 

are equal to each other, then the condition 
 

0
ˆ

0




n

k

k

dt

tpd
 is satisfied. The matrix Kn(t) can be cal-

culated by multiplying the matrix Kc(t) on the right by the diagonal matrix D, which elements are 

obtained using the formula     

  j

n

ml
lm

jj
kn

k

d
*

,

1

0







, 

 

where djj is the j-th diagonal element of the matrix D; klm, l,m=0,…,n, are elements of the matrix 

Kc(t); k*j is the sum of elements of the j-th column of the matrix Kc(t). Such a replacement is cor-

rect when the matrix Kn(t)=U(t)R
-1

D is within permissible variation limits of the factor Kc(t), 

which are caused by sampling errors of the matrix R estimation. This fact can be checked with the 

aid of a relevant statistical hypothesis test. 
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In particular, to do this one can:  

− Generate a set of sampling estimations of the covariance matrix R, which correspond to con-

fidence intervals for the given sample size N   

− Calculate a sample of matrixes {Kni(t)}i=1,..,M using these estimations   

− Calculate a sampling distribution of the Euclidean norm of differences 

    MiE
tt ,...1 }KK{ cni for the classical and standardized amplification factors    

− Taking into account the fact that the obtained sampling distribution in case of sufficiently 

great number of elements in matrix amplification factors corresponds approximately to the 

normal one, calculate expectation and variance sampling estimations for it and evaluate the 

probability p of exceeding the differences’ Euclidean norm    
E

tt cn KK  .  

If p0,05 then usage of the standardized factor Kn(t) is acceptable. The method under con-

sideration can be combined with the clustering procedure using Kohonen self-organizing feature 

maps
[9, 25]

. 

 In accordance with the presented adaptive testing procedure, the Kalman filtration is carried 

out autonomously for each of the skill levels which are taken into account in definition of a problem 

to be solved.   

 Finally, it should be noted that there are some interesting analogies between the Kalman fil-

ter and hidden Markov models
[8, 24]

, which are partially under consideration in the review
[27]

. 

 

4. SOFTWARE IMPLEMENTATION  
 

The filtration procedure under consideration has been software implemented using the LabVIEW 

graphical programming software environment (Figure 2), with integration of both the Riccati matrix 

equation and the Kalman filter equation having been carried out by numerical methods
8
. To esti-

mate initial state of the error covariance matrix U(0), about which the observations do not yield 

usually sufficient useful information, the following assumptions were in use:  

− E(e(0))=0  

− Components of the e(0) vector of filtration errors are statistically independent   

− Variances for components of the e(0) vector of filtration errors are proportional to the 

corresponding variances for components of the observed random noise vector v(t).  
 

                                                 
8
 It is necessary to note that the filtration procedure, in which U(t) is determined by integration of the Riccati equation, 

is more correct than the analogous procedures used in significant number of applications, where U(t) is calculated as a 

solution of the equation         01   tttt T
URUFUFU  for the stationary case.  
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5. MAIN RESULTS AND CONCLUSIONS   
 

1. The probabilistic method to filter out artifacts distorted adaptive testing results, which is based 

on application of trained structures in the form of continuous-time Markov models was devel-

oped and software implemented.  

2. Elimination of artifacts conditioned by certain forms of illegal purposeful interference in testing 

procedure is carried out on the basis of comparing observed and expected subject responses for 

different skill levels with the aid of the Kalman filter adapted to peculiarities of the adaptive 

testing problem.  

3. Selection of the Kalman filter for elimination of artifacts is the optimal approach among the 

relevant ones since it meets the adaptive testing concept under consideration as well as its ap-

plication context in the best way.   

4. The approach suggested has advantages over the testing techniques, which were used before, 

owing to its greater information capability, acceleration of a test procedure and firmness with 

regards to illegal purposeful interference in testing procedure. 
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