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Presented is a human factor risk model when piloting an aircraft. This model is based on comparing
representations of the evaluated crew actions with the comparable action representations of various types
and performance quality, which form a representative sample and are contained in a pre-formed specialized
database. The risk in question is represented by probabilistic estimates, which result from consistent ap-
plications of the Principal Component Analysis, Multidimensional Scaling, and Cluster Analysis to three
types of characteristics, viz.: parameters of flights and states of aircraft systems, gaze movement trajectories
and time series of oculomotor activity primary indexes. These steps form the clusters of flight fragments for
various types and performance quality, including abnormal ones. The Discriminant Analysis provides calcu-
lating the probabilistic profile for belonging to certain target clusters, with a final conclusion being derived
from this structure. Key elements of the approach presented are three new metrics used to compare crew
actions and to ensure significant discrimination for flight fragments of various types and performance qual-
ity. Detailing flight parameters contributions in differences of the flight fragments in a given metric is car-
ried out to provide meaningful analysis of the detected abnormality causes. With sufficient computational
performance, the flight data analysis under consideration can be implemented in real time automatic mode.
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B crarbe mpescTaBIeHa MOJe/Ib PICKOB 4eJI0BeYecKoro (hakTopa Ipy MUJIOTHPOBAHIM BO3AYIIHOTO CY-
Ha. ITa MOJIEJIb TIOCTPOEHA HA CPABHEHUSIX NIPE/ICTABICHUI OIIEHUBAEMBbIX JICHCTBUIA SKUITAXKEN C COTIOCTaBH-
MbIMU TIPEJCTABJIEHUSIME JeHCTBUN PA3JINYHBIX THUIIOB U KAYeCTBA MCIIOJHEHUs], 00Pa3yIOIUX Pelpe3eHTa-
THBHYIO BBIOOPKY U COZIEpPIKAIINXCST B 3apaHee c(hOPMUPOBAHHOI ClIENUaIn3npOBaHHON Oa3e aHHbIX. Prck
MIPE/ICTABJISACTCS BEPOSITHOCTHBIMM OIEHKAMH, KOTOPBIE CTPOSITCS B Pe3yJibTaTe MOCJIEI0BATEILHOTO MTPUMe-
HEHWST MeTOo/Ia TJIABHBIX KOMIIOHEHTOB, MHOTOMEPHOTO TITKAJINPOBAHIS M KIACTEPHOTO aHAIN3a K TPEM TUTIaM
XaPaKTEePUCTUK: TTapaMeTpaM TI0JIeTa U COCTOSHUSA CUCTEM BO3/YIIHOTO CY/IHA, TPACKTOPUAM JIBIUKECHU T71a3
Y BPEMEHHBIM PsiJIaM TIEPBUYHBIX 1T0KA3aTesIeH TI1a30/[BUTATEIBHON aKTUBHOCTH, — YTO IPUBOAUT K (HOPMHU-
POBaHMIO KJIACTEPOB (PPArMEeHTOB 110JIETOB PA3JIMYHBIX THIIOB M KayeCTBA MUCIIOJHEHUS, BKIIOYAs aHOMAJIb-
Hble. JIMCKPUMUHAHTHBIN aHaIu3 0OecleYrBaeT BHIYKMCIEHNE BEPOSITHOCTHOTO MPOMUIIS TIPUHAIIEKHOCTI
K 11€JIEBBIM KJIacTepaM, Ha OCHOBE KOTOPOTO CTPOUTCS UTOrOBOE 3ak/iodenue. KioyeBbIM a1eMeHTOM TIpe/i-
CTaBJIEHHOTO TTO/IXO/IA SBJISTIOTCST TPY HOBbIE METPUKH, TPUMeHsIeMBbIe /IJIT CPAaBHEHUH /IeHCTBUI aKnTIakel 1
o6ecIeurBaroIIe 3HAUNMY IO IUCKPUMIHAIIIO (PPATMEHTOB IIOJIETOB PA3JIMUYHBIX TUIIOB U KAY€CTBA HCIIOJIHE-
Husl. BolmosHsercs fetanusaiis BKJIa10B IapaMeTpoB [10JIeTa U COCTOSIHUSI CUCTeM BO3/LyIITHOIO Cy/IHa B pa3-
Jnuust (hparMeHTOB HOJIETOB B 33/IaHHOI METPUKE, PE3YJIbTaThl KOTOPOI UCIIOJIB3YIOTCS TIPH COJIEPIKATETBHOM
aHa/IM3e NPUYMH BBIABIAEMON aHOMAJIbHOCTH. [Ipu /0cTaTOUHOI CKOPOCTH BBIYMCIEHUI PACCMOTPEHHBIN
AHAJIN3 MOJIETHBIX JIAHHBIX B ABTOMATHYECKOM PEKUME MOKET ObITh BBITIOJIHEH B PEAIBHOM BPEMEHH.

Knrouesvte crosa: MO/ZIeJIb PUCKOB Y€JIOBEYECKOTO (baKTopa, METO/ TJIaBHBbIX KOMIIOHEHTOB, MHOTOMEP-
HO€ HIKaJIMpOBaHue, KJIaCTepHMﬁ aHaJIn3, IIOKa3aTeJIn FJI&SOI[BI/IF&TE]II)HOI?I AKTUBHOCTH.
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Introduction

An objective assessment of the piloting performance is important for assessing the risks
associated with the Information Management Field (IMF) of the cockpit, optimizing IMF and
training the crews. One of the critical issues in this regard is the development of evaluation cri-
teria. Data based on the characteristics of crew actions can be used to objectively assess the ef-
fectiveness of training and the skills acquired as a result. Thus, it is relevant to develop methods
of computerized diagnostics, which can be used during the selection of flight crews to assess the
level of acquired knowledge, abilities and skills. These methods will help to improve objectivity,
informativeness and accuracy of evaluations, as well as to ensure standardization and automation
of measurements. Of particular importance are the development and analysis of new approaches
that can be used to assess the level of training and the psychophysiological condition of pilots.
The main direction is diagnostics on the results of work on modern simulators and benches, where
it is possible to repeat the special conditions of pilots’ work.

Risk is understood as a measure of the quantity of danger measured in the form of an expert
value of a combination of two values — normalized frequency or a measure of the possibility of
accidental occurrence of dangerous events and possible generalized damage from these events
[14]. The classic approach to quantitative evaluation of piloting risks is based on the evaluation
of the probability of crew errors, the value of which changes depending on different conditions
and circumstances.

The analysis of the concepts and technologies used today to reduce the risks and severity of
the consequences of aviation incidents shows a significant interest of the professional community
in various aspects of flight safety. With the complication of aviation equipment and the increas-
ing number of flights, it is possible to form accident prevention concepts based on mathematical
and probabilistic models, using detailed information about both the parameters of aircraft pilot-
ing and the status of pilots, air traffic controllers and other crew members.

It is important to note that risk assessment approaches that require the use of multiple and
difficultly identifiable parameters of aircraft and their systems have no prospect of practical ap-
plication, as errors in the assessment of these parameters, as well as the generally uncertain sensi-
tivity of the assessment result to variations in these parameters, make these approaches extremely
unreliable. The structural stability of risk assessment models is usually not even discussed.

Big problems in practice create calculation models that require detailed risk assessment
for aircraft subsystems. As at the decision of a problem it is necessary to consider a considerable
quantity of interacting systems, it leads to search of numerous variants of behaviour of difficult
technical system that unacceptably complicates the analysis.

Approaches based on statistical analysis of large samples, including data on the fail-
ure of individual systems, allow for the identification of trends, but do not allow for certain
predictions in a particular practical situation, which significantly limits the possibility of
application.

In addition, the transition from one aircraft type to another requires, for most of the ap-
proaches considered, an almost complete redesign of the entire calculation model.

Unfortunately, almost all previously developed methods have one or more of the listed dis-
advantages.

If to proceed from criteria of simplicity of practical application, absence of a binding of es-
timated model to the concrete type of an aircraft (universality) and absence of necessity to in-
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vestigate in detail labor-consuming problems of sensitivity and structural stability of estimated
models, it is expedient to build models of an estimation of risks of piloting on the direct analysis
of measured parameters of flight and integral estimations of fragments of flight as a whole,
without detailed elaboration on parameters (lacks of such detailed elaboration are considered
in the subsequent article), as well as video oculography data to reliably assess the impact of the
Cockpit IMF on piloting efficiency. One of variants of such approach is described in this work.

By now, a certain amount of results related to selection of abnormal exercise implementa-
tions has been accumulated [1—2; 5; 7—13; 15—16; 31—33; 37; 39—40]. The vast majorities of
them consider aircraft trajectories only. Significant limitations that restrict the application of
these results in practice are discussed in [28-30]. Tt should be noted that one of the principal
weaknesses of the techniques in question is applying traditional metrics for comparing flight frag-
ments since these metrics failed to solve the problem under study as well as related problems.

Since pilots are mentioned and because one of the most popular, but the least effective method
Jfor simple assessing the piloting quality is to check whether certain parameters are in the given criti-
cal value ranges for the specified flight modes, comments on this topic are unavoidable. Validity of
such a technique is best clarified by the following analogy: it looks like an attempt to assess the qual-
ity of car driving via the number of collisions with a fence along the road, with all the other informa-
tion about the car movement being ignored. It is obvious that the effectiveness and relevance of such
evaluations do not hold water.

All the limitations presented above are overcome with the aid of the techniques [28—30].
The following is a way to assess skills using experimentally relevant data on piloting. As a result of
their application, skill classes are determined using flight parameters identified during the exer-
cises. Flight parameters are further defined as measured characteristics that determine the move-
ment and condition of aircraft systems.

To analyze the data on piloting, a specialized database is needed, which collects patterns of
their activities, characterizing the performance of exercises by pilots with different levels of train-
ing. A pattern is defined as the representation of a certain fragment of the analyzed activity, called
an exercise, using a set of relevant parameters. These patterns correspond to one of the recognized
levels of skill formation.

The data collected in the database should include exercise parameters as well as relevant
comments containing expert evaluations from various sources, including different types of simu-
lators and benches, virtual reality systems, and the results of real work. Expert comments should
identify weaknesses in crew performance, covering typical errors in terms of activity parameters
and advice to the instructor on how to correct these weaknesses.

The general assumption for the approaches under consideration is that the activities imple-
mented in different styles and quality as well as exercises of different types can be discriminated
in the multidimensional space formed with the aid of the wavelet coefficient metric or the likelihood
metric of eigenvalue trajectories for activity parameters transforms. This statement is proved by
computer experiments based on relevant empirical data. The general method that results from
this conclusion is the pattern selection.

These approaches can be used to support pilot training, to generate instructor-led
evaluations, and to provide automatic real-time evaluation of piloting quality. These analysis
methods differ significantly from the probabilistic methods applied for system control, predictive
diagnostics of technical failures, condition monitoring and activity support of pilot [18].
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Human factor risk assessment in aircraft piloting

Since risk is understood as a measure of the quantity of danger, the human factor risk model
in piloting an aircraft is actually a risk assessment model. The developed human factor risk assess-
ment model related to the cockpit IMF is shown in Figure 1. This model is based on comparing
the views of the evaluated actions of the crews with comparable views of actions of different types
and quality of implementation, forming a representative sample and contained in a pre-formed
specialized database.
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Fig. 1. A model for assessing the human factor risks associated with cockpit IMF
in aircraft piloting
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The risk is represented by probabilistic estimates which are constructed as a result of con-
secutive application of the Principal Component Analysis, Multidimensional Scaling and Cluster
Analysis to three types of characteristics:

— Flight parameters and aircraft systems status,

— Gaze trajectories and

— Time series of primary data of gaze motor activity (GMA), which leads to the formation
of clusters of flight fragments of various types and quality of performance, including abnormal.

The common discriminant analysis provides the calculation of the probability profile of be-
longing to the target clusters on the basis of which the final conclusion is built.

Key elements of the approach in use are three new metrics providing significant dis-
crimination for flight fragments of different types and implementation quality, namely: the
Euclidian metric and the Kohonen metric for wavelet representations of different crew activ-
ity variants, as well as the likelihood metric for eigenvalue trajectories of activity parameters
transforms, without which the Multidimensional Scaling and Cluster Analysis would not give
the acceptable result. Detailed contributions of flight parameters and the state of aircraft systems
to the differences in flight fragments in a given metric are made, the results of which are used in a
substantial analysis of the causes of the detected anomaly.

As a simplified alternative approach, risk probability can also be estimated from GMA pri-
mary data using the logistic regression.

Analysis of crew activity parameters represented by discrete wavelet
transforms of their time series

It is assumed that a crew activity is represented by a set of time series describing the dy-
namics of technical system parameters as well as, if possible, the pilot’s state. Both principal steps
and connections of the analysis performed according to the proposed approach are presented in
Figure 2.

Among the purposes of this analysis are:

— Support of the outcome grading for current activity by means of its comparing with the
activity patterns collected beforehand in the corresponding record database;

— Recognition of abnormal activity and detection of the parameters characterizing pilot
mistakes to reveal the sources of abnormality.

As preliminary processing, selections of time intervals for exercise comparison and data
normalization are carried out.

The redundant information is eliminated using Principal Component Analysis [36; 41]. To
do so, matrices of mutual correlations of time series values are computed, the algebraic problem of
eigenvalues is solved and it is figured out to what extent it is possible to decrease the dimension of
eigen subspace of the researched parameters so that this would contain a sufficiently representa-
tive part of variability of the observed parameters. For each of the selected eigendirections of this
subspace (principal components), for one of the highest component loads a representative is elected
[from registered parameters (transition to the basis of principal components is impractical due to un-
certain substantial interpretation of principal components and, in a number of applied tasks, due to no
precise synchronization of researched processes for different exercises in time). The purpose of this
stage is to find out only relatively independent characteristics replacing groups of significantly de-
pendent representatives with only one characteristic parameter to avoid distortions stipulating to
combined effect of strongly dependent characteristics in the subsequent phases.

158



Kuravsky L.S., Yuryev G.A., Zlatomrezhev V1., Yuryeva N.E.

Assessing the Aircraft Crew Actions with the Aid of a Human Factor Risk Model. ; ‘
Experimental Psychology (Russia), 2020, vol. 13, n0.2 ¢/~ sy
Samples of observed Intelligent System for Database of patterns of

activity exercises to be Flight Analysis
analyzed (ISFA)

F 3

A 4

activity exercises

Principal Component

Analysis Data check
Calculating discrete wavelet Calculating eigenvalues for
transforms for the time series matrix function of activity
representing activity parameters transform
parameters
1 |
1 ¥ ‘
Calculating the matrix of mutual Calculating matrix of . 1 .

) o N . Multidimensional -
distances between exercises in transition probabilities |- Scaling le—»] ©
either the Euclidean metricin a between states of the 5

wavelet coefficient space or the Markov chain ¥ 5
(8] (%]
Kohonen metric representing the Cluster Analysis =
g 8
¥ dynamics of eigenvalues to select © g
= x
i i =] 0 @
Partial comparison: parameter’s for the matrix function of abnormal L=
- . =
contributions to mutual distances [* activity parameters exercisas g E
transform E B
& o
1 @ L)
m
h 4 Generalized E
Plural comparison: Discriminant —] &
w
Expert analysis of Bayesian likelihood Analysis
parameter'sbalanceto || estimations of skill cluster d
select relevant parameters recognition, containing Identification of
parameter’s contributions « cluster probabilistic
l models
Expert identification and interpretation
of abnormalities and mistakes

Fig. 2. The main steps of analysis and their connections (expert actions are painted over)

Time series representing the training processes under study are replaced with series of
wavelet coefficients obtained as a result of the Multiresolution Analysis [35]. In this case, the origi-
nal processes as functions of time are replaced with the integral characteristics of the time inter-
vals, which are associated with these functions domain. In addition, significant saving (for about
an order of magnitude) in the number of coefficients necessary for a correct representation of
these process becomes available. Due to the rules for assigning wavelet coefficients to time series
[Jragments, which are in use in multiresolution analysis, problems associated with the need to precisely
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synchronize processes relating to various same-type training exercises in time have been cancelled
since the most significant coefficients relating to relatively long time intervals are almost insensitive
to moderate time shifts.

For the exercises under study, one should either calculate a matrix of mutual distances be-
tween wavelet representations of different crew activity variants in the Euclidean and Kohonen
metrics or apply the method where similar matrices associated with the observed activity frag-
ments are calculated in the probability trajectories of eigenvalues. Matrices of mutual distances
for all considered parameters are added to form the total matrix of mutual distances between the
exercises under study. When analyzing the abnormally performed exercises, relative contribu-
tions of activity parameters to the elements of matrices of mutual distances are calculated, which
makes it possible to determine the parameters characterizing pilot errors in order to identify the
causes of the abnormality.

For the analysis of the mutual position of the exercises in the space of acceptable dimension,
after calculating the matrix of mutual distances, a multidimensional scaling is performed [3,38].
The calculated distribution of the analyzed exercises in a constructed scaling space is further
used to determine the distances between the exercises when drawing the diagnostic conclusions.
The dimension of a scaling space is determined by the criterion of sufficient differentiation of
the exercise samples related to different recognizable classes. The aim of this step is subsequent
discrimination between the exercise types and normal/abnormal activity implementations in a
scaling space.

The Cluster Analysis of patters in the obtained scaling space is performed to reveal clusters
representing various types of exercises and operator skill classes. Obtained results provide pos-
sibility for creating certain classification rules to separate different scale levels of trial quality
assessment in a scaling space. Wherein cluster differences for an exercise type can be explained by
the exercise implementation resulted from individual skills.

Probabilistic models represented by Markov random processes with discrete states and
continuous time for each pattern cluster are created using the identification procedure to repre-
sent probabilistic dynamics for each operator skill class to forecast probabilistic class behavior [6;
19—26; 34].

Computations of distances to pattern cluster centers or to the nearest patterns are based on
results of performing a sequence of test exercises. If the pattern sample size is fairly large, distanc-
es are defined to centers of cluster patterns. These are computed based on the multidimensional
scaling data obtained earlier. If pattern samples are small, the nearest pattern is defined, which
definition may be done in two ways: either immediately through the computing of the pattern
being nearest of wavelet representation or through the identifying of the pattern in the resulting
scaling space, with such pattern being nearest.

So, three ways of skill class assessments are available:

— Direct comparison of current exercises with the activity database patterns in the wavelet
representation metric associated with observed exercises, which is considered as a basic tech-
nique, as well as on

— Probabilistic assessment of skill class recognition via the Generalized Discriminant
Analysis using sample distribution functions of exercise distances to cluster centers in a scaling
space, which is considered as a supportive technique, and

— Bayesian likelihood estimation (selecting a skill class with the aid of probabilistic profile
of staying in activity parameter ranges), which is also considered as a supportive technique.
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Wherein, the actions, which an expert is responsible for, are:

— Assessment to select clusters of abnormal exercises;

— Analysis of parameter’s balance to select relevant parameters to be under study;

— Identification and interpretation of abnormalities and mistakes.

The Intelligent System for Flight Analysis (ISFA) [27] implementing the developed tech-
niques with the aid of the LabVIEW [4] graphical programming system provides the required
calculations.

The Euclidian wavelet metric for various crew activities and the eigenvalue trajectory like-
lihood metric for activity parameter transforms are discussed in details in [28-30]. A description
of the Kohonen metric developed after the publication of these papers is represented in the next
section.

An example of the practical application of the approach under consideration, demonstrat-
ing the automatic real-time assessment of piloting risks, is represented in the Annex.

The Kohonen metric in a wavelet coefficient space

Calculating the Kohonen metric values in a wavelet coefficient space is performed with the
aid of the Self-Organizing Maps (SOM), or Kohonen networks [10; 17]. Each parameter of the
crew requires its own Kohonen Self-Organizing Map. The input layers of these structures receive
wavelet coefficient representations of activity parameters. The output layers (topological maps)
form rectangular matrices composed of elements on radial basis functions (Figure 3). When each
element of a training sample is sequentially processed, the neuron closest to it in the Euclidean
metric (or the “winning” neuron) is selected.

Then, taking the weighted sum of the former center of the selected radial element and the
training sample element under consideration the parameters of the winning neuron and neu-
rons from its vicinity are corrected so that they become more similar to the input, moreover, the
implemented “shift” of the centers of neurons is made quite small. This vicinity is compressed
to zero during the training process. As a result of a sequence of such corrections, certain parts
of a topological map are “dragged” towards training sample elements and similar inputs acti-
vate sets of closely lying neurons of topological maps. Thus, a SOM learns to “understand” the
structure of the input data. Those maps idea came by analogy with the associative properties
of the human brain.

Fig. 3. The input and output layers of a Self-Organizing Map
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A mutual distance between wavelet representations of a pair of source processes for differ-
ent operator activities is determined as the mean for the two following differences:

— Between the SOM distance from the first process to its “winning” neuron and the SOM
distance from the second process to the detected “winning” neuron of the first process and, vice
versa,

— Between the SOM distance from the second process to its “winning” neuron and the
SOM distance from the first process to the detected “winning” neuron of the second process.

The total mutual distance is the sum of corresponding distances for all crew activity param-
eters. Therefore, as for the Euclidean metric in a wavelet coefficient space, estimations of relative
contributions of activity parameters in the elements of the mutual distances matrices are also
available.

An example illustrating the effectiveness of using the three metrics under consideration
when comparing flight fragments of different types is discussed in the next section.

Comparison of the metrics under consideration: a case study

To illustrate application efficiency of the metrics in question, presented hereinafter is a
case study for 34 demonstration flight exercises belonging to five groups, which are convention-
ally called “Upset Recovery”, “Wind Shear”, “Single engine approach”, “Engine fail”, and “Flying
around”. These exercises were performed at the Aircraft Cockpit Universal Prototyping Bench of
the State Research Institute of Aviation Systems (GosNITAS) (Fig. 4). The matrices of mutual
distances, which are calculated using the Euclidean and Kohonen metrics in a wavelet coeffi-
cient space, show definitely by sight substantial differences between the groups of exercises under
study in all cases (Fig. 5 a, ¢). The matrices calculated via the likelihood metric also show these
differences, however they are not so clearly expressed (Fig. 5b).

Fig. 4. The Aircraft Cockpit Universal Prototyping Bench of GosNITAS
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Fig. 5. Matrices of mutual distances for five groups of 34 demonstration flight exercises,
which are obtained with the aid of: (a) the Euclidean metric in a wavelet coefficient space; (b)
the likelihood metric; (¢) the Kohonen metric in a wavelet coefficient space

Point representations of the flight exercises, which are resulted from the Multidimensional
Scaling, are presented in Fig. 6. To evaluate quantitatively the quality of discrimination between
the given groups of exercises, the Wilks Lambda (L) statistic can be applied to these point repre-
sentations in the scaling spaces. Its values lie in interval [0;1], with the proximity to zero indicat-
ing good discrimination, and the proximity to one indicating poor discrimination. Since tables
of the Wilks statistic distribution, which are available by now, are not accurate and complete
enough, the more investigated the F-ratio (called the associated F-statistic), in which the Wilks
statistic is recalculated, is used for testing the hypothesis of means equality for the groups under
study.
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Fig. 6. Point representations for five groups of 34 demonstration flight exercises, which are resulted from
the Multidimensional Scaling in case of: (a) the Euclidean metric in a wavelet coefficient space;
(b) the likelihood metric; (¢) the Kohonen metric in a wavelet coefficient space
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Values of these statistics, which are shown in Table 1, confirm that the Euclidean and
Kohonen metrics yield highly significant discrimination between exercises of different types for
these case studies, whereas the likelihood metric results in sufficiently significant discrimination
overall. The Fisher linear discriminant analysis shows slightly smaller number of wrong recogni-
tions in case of the Kohonen metric (zero vs one). In total, the Euclidean and Kohonen metrics
which are constructed in completely different ways look about the same at the given case studies.

Table 1

Evaluating the quality of discrimination between the given groups of exercises
for the Euclidean, likelihood and Kohonen metrics: the Wilks Lambda
and the associated F-statistic

Euclidean metric in Kohonen metric in a
a wavelet coefficient | Likelihood metric | wavelet coefficient
space space
Wilks Lambda: 5 groups of 0.0015 0.34 0.0016
34 flight exercises
Associated F-statistic (F (8,56)): 174.5 5.07 170.2
5 groups of 34 flight exercises (p<<0.0001) (»< 0.0001) (p<<0.0001)

Despite these comparisons, taking into account the significantly different nature of met-

rics, it is reasonable not to choose one or two of them, but to use them in parallel, juxtaposing the
results.

Simplified approach: assessing risk probability of making a wrong decision
basing on primary GMA parameters using the logistic regression

Assessing risk probability of making a wrong decision is clearly associated with the prob-
ability of making the right decision leading to the elimination of a critical situation.

This index is estimated in two steps:

Identifying how this probability depends from a certain parameter that is available for esti-
mations based on experimental data

Performing measurements to estimate the above specified parameter with the aid of a pilot
gaze tracking system.

The duration of a correct response is further considered as such a specified characteristic.

Let us assume that R = ¢ + ¢ where R — duration of overcoming the critical flight situation,
t ,— duration of both reading and processing information from the cockpit indicators by a pilot,
t — duration of the response.

Let us suppose that in case of sufficiently large time interval, the probability of a correct
response can be expressed using the G. Rasch [25] model which is represented with the aid of the
logistic function (Fig. 7):

al
p(d) = 1+ et

where A — C(¢t) — D; C(t) — ability of the correct response, which is represented in the logit

scale; D — difficulty of a task (situation) , which is also represented in the logit scale; a — param-
eter (its real empirical value is 7.7).
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Both the ability to make the right decision and the difficulties of tasks (situations) are mea-
sured in a single dimensionless logit scale, which expresses the proportion of correct and incorrect
actions during observations. The conversion into the logit scale is made by a formula:

T

L =1
nl—r

where L — is the value in the logit scale, 7 — is the probability of correct exercise implementation.
In case of evaluation of difficulty this parameter characterizes the possibility of performing a certain
exercise for the whole variety of subjects, and in case of evaluation of abilities — the results of a certain
subject for the whole variety of acceptable exercises. Statistical approximations of the given values are
obtained after replacement in the given formula of probability r with its sampled estimations.
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Fig. 7. The G. Rush model represented by the logistic function

A similar logistic function (Fig. 8) can be used to represent the dependence of the ability of
the correct response C(¢) from the duration ¢ of response deliberation:

ol (¢ ter)

6 -4 2 2 a ¢t

Fig. 8. Dependence of ability of the correct response from the duration of deliberation responses
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The quantity ¢ represents individual pilot’s characteristics.
Further, let us assume that the quantities ¢ and ¢ are dimensionless and measured in the
logit scale:

t
t=1In (ﬂ)
tcndim

where £, — dimensional time, ¢, — dimensional critical time value.
In this case, ¢, = 0,

Jt
C(t)=C,u ( ﬁ - 0,5), C,..and fare the parameters to be identified.

The following representations of observation results are in use:

1) Matrix M, of the response correctness at £>>t_;

2) Matrix M, of the response correctness at t values having the order of magnitude of ¢_ (it
is assumed that the times of response ¢, are known for each pilot i and task /).

Matrices of the response correctness have form (one represents the correct decision, and
0 — the wrong one):

G, — pilots,
T, — training T, T, T T,
G, 01 01 01 01 01
G, 01 01 01 01 01
01 01 01 01 01
G, 01 01 01 01 01
G, 01 01 01 01 01

Let us consider the estimation of quantity a to be determined. Using matrix M,, the cor-
responding difficulty D, is estimated for each task 7} via the frequency of correct responses. The
ability C, . is estimated for each pilot i by the maximum likelihood method (MLM) using the
given known parameter a (one-parameter optimization).

Using matrix M, and abilities C, ., which are found with the aid of matrix M, one can use
the fvalues from a spec1fled range Wlth the step that is equal to a specified accuracy to find thez .
values for each pilot i by MLM. Comparing the MLM-estimations (logarithms of the likelihood
functions) of all pilots in the table for the considered f values, one is to obtain the maximum likeli-
hood mean estimation of parameter f.

Let us assume that R — duration of a critical situation under study and ¢ = ¢ ,R — duration
of reading information from indicators (0 < g, < 1) before training procedure. Let us suppose that
duration of reading information has been changed in g times as a result of training: ¢, = g R where
0 < g < 1. Then the duration of response deliberation is to be changed in 7 times where

_R—qqoR 1-4qqq
Let us denote the old duration of response deliberation as ¢ and the new duration of re-
sponse deliberation as ¢* = 7. In this case
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t* *
ef(tftcr) ef(Tftcr) erl(t —Tte)
— - = [ - *
)= Cnax 1+4+e/tty) Cmax s = Cax Soox = .
1+ e/ (77tcr) 1+ eF(t —Tte)

Thus, at the transition to the new time scale after the training session, fis replaced by, and
t.— byt . In the logit scale, the expression is even simpler:
S ox
ert
max — [,

1+ert

CtH=¢C

To simplify, one can assume that C s identified as a common parameter for all pilots.

Let the values of g and g, to be known and the parameters C _and f to be identified with
the aid of matrices M, and M,. Assuming duration of response deliberation to be some free param-
eter, one can calculate values of the G. Rasch function

ea(C(t)—D
pC(H)—D)= 1+ oaCOD

for various time values ¢ and values of task difficulties D belonging to a certain reasonable
range (for example D e [-3; 3]) with a specified step in cases of old and new durations of read-
ing information from indicators, with the results being presented in the form of two graphs of
3D-surfaces p(¢, D) to be compared.

Assuming the value ¢ — ¢ to be normally distributed with determined parameters (mean is
equal to zero; standard deviation is estimated using the observed data, which determine ¢, and
the known R value), one can estimate mean values of p(C(¢,)— D) for each value of difficulty D
in cases of the old and new durations of reading information and compare two obtained graphics
P,oun (D). This makes it possible to estimate how the probability of correct responses changes for
various tasks (situations) after the training session due to both changes in the duration of reading
information and improving ability of correct responses. This indicator can be used as a principal
quantitative characteristic of training effectiveness. In addition, one can use the shift of mean
duration of response t,, for an available sample of pilots, which results from a training session,
as an additional indicator. Statistical significance of this shift can be evaluated with the aid of
parametric and nonparametric fit tests for the corresponding samples.

Results of the experiments based on the airplane TU-204 simulator revealed that keeping
the aircraft at the desired trajectory in the approach mode yields the frequency of pilot’s gaze
transitions from one parameter under observation to another, which is equal to 130—150 move-
ments per minute. Assuming that the mean time of gaze fixation is equal to 300 ms, estimation of
the g, value can be taken as

140 x 300 Mc 0
60 x 1000mMc

in the first approximation. The ¢ values can be checked in a reasonable range, selecting the
level, for which a reasonable increase in the probability of correct responses for the given tasks
(situations) is achieved.

The duration ¢, of both reading and processing the indicators information in the first ap-
proximation can be estimated as the sum of durations of the gaze fixations during a critical situa-
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tion with the upper limit of 320 ms (i.e. the fixations which duration exceeds 320 ms are recorded
as 320 ms fixations). The experiments showed that individual characteristics of the pilots had
rather weak influences on this feature.

An example of the logistic regression for risk assessment on one of the primary GMA pa-
rameters is shown in Fig. 9. The analyzed GMA parameter was the time spent on thinking over
the situation, planning actions and making decisions, estimated by the duration of gaze fixation
during the reading and interpretation of indicator data (when the gaze is directed at the devices,
not at the cockpit window). The logistic regression parameters were identified using the method
of maximum likelihood.

1
2
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0,6 \
\
\
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0 5 10 15 20 25 30 35 40 45 50

Fig. 9. The logistic regression to assess the probabilities of making the right decision basing
on the duration of gaze fixation during the reading and interpretation of indicator readings (green stars
correspond to successfully performed exercises and red stars correspond to unsuccessful attempts; on the
abscissa axis the indicator under study is placed)

Principal results and conclusions

1. A human factor risk model has been developed for piloting an aircraft. This model is
based on comparing the views of evaluated actions of crews with comparable views of actions of
different types and implementation quality, forming a representative sampling and contained in
a pre-formed specialized database. The risk is represented by probabilistic estimations which are
built as a result of consistent application of the Principal Component Analysis, Multidimensional
Scaling and Cluster Analysis to three types of characteristics: flight parameters and state of air-
craft systems, eye trajectories and time series of primary indicators of gaze-tracking activity —
which leads to formation of clusters of flight fragments of different types and quality of perfor-
mance, including abnormal ones. The discriminant analysis provides the calculation of the prob-
ability profile of belonging to the target clusters, on the basis of which the final conclusion is built.

2. Key elements of the approach in use are three new metrics providing significant discrimi-
nation for flight fragments of different types and implementation quality, namely: the Euclidian
metric and the Kohonen metric for wavelet representations of different crew activity variants, as
well as the likelihood metric for eigenvalue trajectories of activity parameters transforms, with-
out which the Multidimensional Scaling and Cluster Analysis would not give the acceptable re-
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sult. Considering the different nature of the three applied metrics, it is reasonable to use them in
parallel, comparing the results obtained.

3. Detailing contributions of flight parameters and state of aircraft systems to the differ-
ences of flight fragments in a given metrics is performed, which results are used for substantial
analysis of the detected anomaly reasons.

4. As a simplified alternative approach, the risk probability is estimated from the primary
indicators of pilot gaze tracking activity using the logistic regression.

5. The obtained results allow to create classification rules for division of different quality
levels of exercises, as well as their types in a scaling space, with the differences between clusters of
different variants of performing the same exercises explained by the fact that their implementa-
tion is determined by individual skills.

6. The evaluation of piloting risks comes down to determining the probabilities of belong-
ing to target clusters related to the types of exercises and the quality of piloting.

7. With sufficient calculation speed, the considered analysis of flight data in automatic
mode can be performed in real time.

Annex
Practical application example: automatic real-time assessment of piloting risks

The following are the stages of analysis of a given (performed) exercise in automatic mode,
using a database of patterns containing five qualitatively different groups of flight fragments,
consisting of 34 normally and abnormally performed flight exercises, performed at the Aircraft
Cockpit Universal Prototyping Bench of the State Research Institute of Aviation Systems
(GosNIIAS). Piloting risk assessment was performed in the process of performing a given flight
exercise (32 seconds of flight), immediately after its completion (64 seconds of flight) and after
a certain time after the completion of the exercise (128 seconds of flight). The analysis was auto-
matically performed using a special version of Intelligent System for Flight Analysis (ISFA 2.1).

During the analysis of a given flight exercise, the following operations were performed:

¢ 32 seconds of flight:

— Parameters representing principal components have been defined (Fig. 10);

— The matrices of mutual distances between the flight exercise implementations in the
wavelet coefficients metric and the likelihood metric for eigenvalue trajectories of activity pa-
rameters transforms have been calculated (Fig. 11);

— The flight fragments from the database of patterns, which in the specified metrics are the
closest to the given exercise, are defined, and the type of the exercise (“Upset recovery”) and its
quality (“Wrong implementation” — abnormal) are defined according to the information corre-
sponding them in this base (Fig. 12);

— As a result of consistent implementation of the Multidimensional scaling, Cluster
Analysis and Discriminant Analysis, the distribution of flight exercises in a scaling space, the re-
sults of their clustering and assessment of the probabilities of belonging of a given exercise to each
of the considered clusters, with the probability estimation for belonging to the “Upset recovery”
type being equal to 0.89 (Fig. 13);

® 64 seconds of flight:

— Parameters representing principal components have been defined,;
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— The matrices of mutual distances between the flight exercise implementation in the
wavelet coefficients metric and the likelihood metric for eigenvalue trajectories of activity pa-
rameters transforms have been calculated (Fig. 14);

— The flight fragments from the database of patterns, which in the specified metrics are the
closest to the given exercise, are defined, and the type of this exercise (“Upset recovery”) and its
quality (“Wrong Implementation” — abnormal) are confirmed according to the information cor-
responding them in this base (Fig. 15);

— In order to reveal the differences between the observed exercise and the master exercise
of the type “Upset recovery” from the database of patterns, the relative contributions of flight
parameters determined with the help of the Principal Component Analysis were evaluated, in the
corresponding elements of the matrices of mutual distances calculated in the wavelet coefficients
metric, which showed that the difference between the specified flight fragments is mainly deter-
mined by the parameters “Roll Euler Angle” and “Angle of Attack” (Fig. 15);

— As a result of consistent implementation of the Multidimensional Scaling, Cluster
Analysis and Discriminant Analysis, the distribution of flight exercises in a scaling space, the re-
sults of their clustering and evaluation of the probabilities of belonging to a given exercise to each
of the considered clusters, with the probability estimation for belonging to the “Upset recovery”
type being equal to 0.71 (Fig. 16);

¢ 128 seconds of flight:

— Parameters representing principal components have been defined (Fig. 17);

— The matrices of mutual distances between the flight exercise implementations in the
wavelet coefficients metric and the likelihood metric for eigenvalue trajectories of activity pa-
rameters transforms have been calculated (Fig. 18);

— The flight fragments from the database of patterns, which in the specified metrics are the
closest to the given exercise, are defined, and according to the information accompanying them in
this base the type of this exercise (“Upset recovery”) and its quality (“Wrong Implementation” —
abnormal) are confirmed (Fig. 19);

— To confirm the reason for the differences between the observed exercise and the master
exercise of the type “Upset recovery” from the database of patterns, a clarifying assessment of the
relative contributions of flight parameters to the corresponding elements of the matrices of mutual
distances was made, which, as before, showed that the difference between the specified flight frag-
ments is mainly determined by the parameters “Roll Euler Angle” and “Angle of attack” (Fig. 20);

— As a result of consistent implementation of the Multidimensional Scaling, Cluster
Analysis and Discriminant Analysis, the refined distribution of flight exercises in a scaling space,
the results of their clustering and assessment of the probability of belonging of a given exercise to
each of the considered clusters are calculated, with the probability estimation for belonging to the
“Upset recovery” type being equal to 1.0 (Fig. 20);

— For the purpose of meaningful comparing dynamics of the parameters determining the
differences between the observed and reference master exercise implementations, these param-
eters are presented in a form convenient for expert assessment (Fig. 21).

Obviously, with sufficient computational speed, the considered flight data analysis can
be performed in the automatic mode in real time. The evaluation of piloting risks comes down
to determining the probabilities of belonging to target clusters related to the types of exercises
and the quality of piloting.
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Fig. 11. Calculation of matrices of mutual distances between the flight exercises in the given metrics

(32 seconds of flight)

Fig. 12. Definition of flight fragments from the database of patterns that are closest to the given exercise,
with the information associated with them in this base determining the type of this exercise («Upset re-
covery») and its quality («Wrong implementation» — abnormal) (32 seconds of flight)

172



Kuravsky L.S., Yuryeo G.A., Zlatomrezhev V.1., Yuryeva N.E.
Assessing the Aircraft Crew Actions with the Aid of a Human Factor Risk Model.
Experimental Psychology (Russia), 2020, vol. 13, no. 2

Fig. 13. As aresult of consistent performing the Multidimensional Scaling, Cluster Analysis and Discriminant
Analysis, the distribution of flight exercises in a scaling space is calculated. The results of their clustering and
evaluation of probabilities of belonging of a given exercise to each of the considered clusters
(32 seconds of flight) are presented

Fig. 14. Calculation of the matrix of mutual distances between the flight exercises in the Euclidean metric
of wavelet coefficients and the likelihood metric for eigenvalue trajectories of activity parameters trans-
forms (64 seconds of flight)

Fig. 15. Definition of flight fragments from the database of patterns that are closest to the given exercise,
and the information associated with them in this database confirms the type of the exercise (“Upset re-
covery” and its quality “Wrong implementation” — abnormal). The evaluation of relative contributions of
flight parameters to the corresponding elements of matrices of mutual distances showed that the difference
between flight fragments is mainly determined by the parameters “Roll Euler Angle” and “Angle of attack”
(64 seconds of flight)
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Fig. 16. As aresult of consistent performing the Multidimensional Scaling, Cluster Analysis and Discriminant
Analysis, the distribution of flight exercises in a scaling space is calculated. The results of their clustering and
evaluation of probabilities of belonging of a given exercise to each of the considered clusters (64 seconds of
flight) are presented
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Fig. 17. Parameters representing principal components (128 seconds of flight)
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Fig. 18. Calculation of the matrix of mutual distances between the implementation of flight exercises in the
Euclidean metric of wavelet coefficients and the likelihood metric for eigenvalue trajectories of activity
parameters transforms (128 seconds of flight)
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Fig. 19. Identification of flight fragments from the database of patterns that are closest to the give
exercise; the exercise type (“Upset recovery”) and its quality (“Wrong Implementation” — abnormal)
are confirmed by the information accompanying them in this database. The evaluation of relative
contributions of flight parameters to the corresponding elements of matrices of mutual distances confirmed
that the difference between flight fragments is mainly determined by the parameters “Roll Euler Angle”
and “Angle of attack” (128 seconds of flight)

Fig. 20. As a result of consistent performing the Multidimensional Scaling, Cluster Analysis
and Discriminant Analysis, the distribution of flight exercises in a scaling space is calculated. The results
of clustering and evaluation of probabilities of belonging of a given exercise to each of the considered clusters
are presented. (128 seconds of flight)
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Fig. 21. For the purpose of meaningful comparing dynamics of the parameters determining the differences
between the observed and reference master exercise implementations, these parameters are presented in a
convenient form for expert assessment
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