Russian Psychological Issues PsyJournals.ru
OPEN ACCESS JOURNALS
JournalsTopicsAuthorsEditor's Choice About PsyJournals.ruContact Us

  Previous issue (2019. Vol. 12, no. 1)

Included in Web of Science СС (ESCI)

CrossRef

Experimental Psychology (Russia)

Publisher: Moscow State University of Psychology and Education

ISSN (printed version): 2072-7593

ISSN (online): 2311-7036

DOI: http://dx.doi.org/10.17759/exppsy

License: CC BY-NC 4.0

Started in 2008

Published quarterly

Free of fees
Open Access Journal

 

Mathematical foundations of a new approach to the construction of testing procedures 889

Kuravsky L.S., Doctor of Engineering, Dean of the Computer Science Faculty , Moscow State University of Psychology and Education , Moscow, Russia, l.s.kuravsky@gmail.com
Marmalyuk P.A., PhD in Engineering, Head of the Laboratory of Psychology and Applied Software, Moscow State University of Psychology & Education, Moscow, Russia, ykk.mail@gmail.com
Alkhimov V.I., Dr. Sci. in Physics and Mathematics, Professor, Department of Applied Mathematics, Faculty of Information Technologies, MCUPE, Russia
Yur'ev G.A., Post-graduate Student, Faculty of Information Technologies, Department of Applied Informatics, MCUPE , Moscow, Russia
Abstract
In this paper the authors propose to consider a new approach to the construction of intelligent and competency tests, based on a new technology of eye tracking of the subject on the surface of the test stimulus with the application of one of the most common varieties of random processes and methods of the subsequent analysis of the obtained data. Special attention is given to the mathematical substantiation of the proposed methods. An example of practical application of the obtained results for determining of the level of mathematical education of pupils and students is an illustration of the adaptation of the methods to the decision of applied problems of an estimation of the level of intelligence and competence.

Keywords: testing, Markov process, the Fokker-Planck-Kolmogorov equation, Kolmogorov equations

Column: Mathematical Methods

For Reference

References
  1. Barabanshhikov V. A. Okulomotornye struktury vosprijatija. M.: IP RAN, 1997.
  2. Barabanshhikov V. A. Vosprijatie vyrazhenij lica. M.: IP RAN, 2009.
  3. Barabanshhikov V. A. Jekspressii lica i ih vosprijatie. M.: IP RAN, 2012.
  4. Barabanshhikov V. A. Vosprijatie individual'no-psihologicheskih osobennostej cheloveka po izobrazheniju celogo i chastichno otkrytogo lica // Jeksperimental'naja psihologija. 2008. T. 1. № 1. S. 62–83.
  5. Barabanshhikov V. A., Anan'eva K. I., Haritonov V. N. Organizacija dvizhenij glaz pri vosprijatii izobrazhenij lica // Jeksperimental'naja psihologija. 2009. T. 2. № 2. S. 31–60.
  6. Barabanshhikov V. A., Demidov A. A. Jeksperimental'naja psihologija v Rossii: sovremennoe sostojanie i perspektivy razvitija // Jeksperimental'naja psihologija. 2011. T. 4. № 1. S. 134–140.
  7. Barabanshhikov V. A., Majnina I. N. Ocenka «glubinnyh» individual'no-psihologicheskih osobennostej cheloveka po fotoizobrazheniju ego lica // Jeksperimental'naja psihologija. 2010. T. 3. № 4. S. 50–71.
  8. Bezrukih M. M., Demidov A. A., Ivanov V. V. Vozrastnye osobennosti okulomotornoj aktivnosti detej v processe chtenija // Psihologija cheloveka v sovremennom mire. T. 2: Mater. Vseross. jubil. nauch. konf., posvjashh. 120-letiju so dnja rozhdenija S. L. Rubinshtejna. M.: IP RAN. 2009. S. 151–155.
  9. Demidov A. A., Zhegallo A. V. Oborudovanie SMI dlja registracii dvizhenij glaz: test-drajv // Jeksperimental'naja psihologija. 2008. T. 1. № 1. S. 149–159.
  10. Zhegallo A. V. Sistema registracii dvizhenij glaz SMI High Speed: osobennosti ispol'zovanija // Jeksperimental'naja psihologija. 2009. T. 2. № 4. S. 111–117.
  11. Kramer G. Matematicheskie metody statistiki. M.: Mir, 1976.
  12. Kuravskij L. S., Baranov S. N. Primenenie nejronnyh setej dlja diagnostiki i prognozirovanija ustalostnogo razrushenija tonkostennyh konstrukcij // Nejrokomp'jutery: razrabotka i primenenie. 2001. № 12. S. 47–63.

  13. Kuravskij L. S., Baranov S. N. Sintez setej Markova dlja prognozirovanija ustalostnogo razrushenija // Nejrokomp'jutery: razrabotka i primenenie. 2002. № 11. S. 29–40.

  14. Kuravskij L. S., Baranov S. N., Malyh S. B. Nejronnye seti v zadachah prognozirovanija, diagnostiki i analiza dannyh: Ucheb. posobie. M.: RUSAVIA, 2003.

  15. Kuravskij L. S., Baranov S. N., Kornienko P. A. Obuchaemye mnogofaktornye seti Markova i ih primenenie dlja issledovanija psihologicheskih harakteristik // Nejrokomp'jutery: razrabotka i primenenie. 2005. № 12. S. 65–76.

  16. Kuravskij L. S., Baranov S. N., Jur'ev G. A. Sintez i identifikacija skrytyh markovskih modelej dlja diagnostiki ustalostnogo razrushenija // Nejrokomp'jutery: razrabotka i primenenie. 2010. № 12. s. 20–36.

  17. Kuravskij L. S., Margolis A. A., Jur'ev G. A., Marmaljuk P. A. Koncepcija sistemy podderzhki prinjatija reshenij dlja psihologicheskogo testirovanija // Psihologicheskaja nauka i obrazovanie. 2012. № 1. S. 56–65.

  18. Kuravskij L. S., Jur'ev G. A. Adaptivnoe testirovanie kak markovskij process: modeli i ih identifikacija // Nejrokomp'jutery: razrabotka i primenenie. 2011 a. № 2. S. 21–29.

  19. Kuravskij L. S., Jur'ev G. A. Ispol'zovanie markovskih modelej pri obrabotke rezul'tatov testirovanija // Voprosy psihologii. 2011 b. № 2. S. 98–107.

  20. Kuravskij L. S., Jur'ev G. A. Ob odnom podhode k adaptivnomu testirovaniju i ustraneniju ego artefaktov // Nejrokomp'jutery: razrabotka i primenenie. 2012 a. № 1. S. 54–66.

  21. Kuravskij L. S., Jur'ev G. A. Verojatnostnyj metod fil'tracii artefaktov pri adaptivnom testirovanii // Jeksperimental'naja psihologija. 2012 b. T. 5. № 1. S. 119–131.

  22. Marmaljuk P. A., Zvonkina O. M. Opornye pokazateli glazodvigatel'noj aktivnosti pri prohozhdenii testa Ravena i avtomatizacija ih rascheta // Molodye uchenye – nashej novoj shkole. Mater. XI Mezhvuz. nauch.prakt. konf. s mezhd. uchastiem. M.: MGPPU, 2012. S. 350–352.

  23. Panfilova A. S. Sistema testirovanija intellekta na baze faktornyh modelej i samoorganizujushhihsja kart Kohonena // Nejrokomp'jutery: razrabotka i primenenie. 2012. № 9 (v pechati).

  24. Tihonov V. I., Shahtarin B. I., Sizyh V. V. Sluchajnye processy. Primery i zadachi. T. 5. Ocenka signalov, ih parametrov i spektrov. Osnovy teorii informacii. M.: Gorjachaja linija-Telekom, 2009.

  25. Tjumeneva Ju. A. Psihologicheskoe izmerenie. M.: Aspekt-Press, 2007.

  26. Hohlova A. A. Issledovanie glazodvigatel'noj aktivnosti pri prohozhdenii matrichnogo testa intellekta Ravena // Molodye uchenye – nashej novoj shkole: Mater. X Nauch.-prakt. mezhvuz. konf. M.: MGPPU. 2011. S. 343–345.

  27. Shahtarin B. I. Sluchajnye processy v radiotehnike. T. 1. Linejnye preobrazovanija. M.: Gorjachaja linija- Telekom, 2010.

  28. Baker F. B. The Basics of Item Response Theory. ERIC Clearinghouse on Assessment and Evaluation. University of Maryland, College Park, MD, 2001.
  29. Brandt S. A., Stark L. W. Spontaneous eye movements during visual imagery reflect the content of the visual scene // Journal of Cognitive Neuroscience.1997. № 9. Р. 27–38.
  30. Cagli R. C., Coraggio P., Napoletano P., Boccignone G. What the draughtsman’s hand tells the draughtsman’s eye: A sensorimotor account of drawing // International Journal of Pattern Recognition and Artificial Intelligence. 2008. № 22. Р. 1015–1029.
  31. Dayan P. Improving generalization for temporal difference learning: The successor representation // Neural Computation. 1993. № 5. Р. 613–624.
  32. Ellis S. R., Stark L. Statistical dependency in visual scanning // Human Factors. 1986. № 28. Р. 421–438.
  33. Gregory R. J. Psychological testing: History, principles, and applications (5th edition). N.Y.: Pearson, 2007.
  34. Gulliksen H. Theory of Mental Tests. John Wiley & Sons Inc., 1950.
  35. Hayes Т. R., Petrov A. A., Sederberg P. B. A novel method for analyzing sequential eye movements reveals strategic influence on Raven’s Advanced Progressive Matrices // Journal of Vision. 2011. № 10. Р. 1–11.
  36. Jansen A. R., Marriott K., Yelland G. W. Parsing of algebraic expressions by experienced users of mathematics // European Journal of Cognitive Psychology. 2007. № 19. Р. 286–320.
  37. Kuravsky L. S., Baranov S. N. Condition monitoring of the structures suffered acoustic fatigue failure and forecasting their service life // Proc. Condition Monitoring 2003, Oxford, United Kingdom, July 2003. Р. 256–279.
  38. Kuravsky L. S., Malykh S. B. On the application of queuing theory for analysis of twin data // Twin Research. 2000. № 3. Р. 92–98.
  39. Kuravsky L. S., Baranov S. N. Neural networks in fatigue damage recognition: diagnostics and statistical analysis // Proc. 11th International Congress on Sound and Vibration, St.-Petersburg, Russia, July 2004. Р. 2929–2944.
  40. Kuravsky L. S., Baranov S. N. The concept of multifactor Markov networks and its application to forecasting and diagnostics of technical systems // Proc. Condition Monitoring 2005, Cambridge, United Kingdom, July 2005. Р. 111–117.
  41. Kuravsky L. S., Baranov S. N., Yuryev G. A. Synthesis and identification of hidden Markov models based on a novel statistical technique in condition monitoring // Proc. 7th International Conference on Condition Monitoring & Machinery Failure Prevention Technologies, Stratford-upon-Avon, England, June 2010.
  42. Myers C. W., Schoelles M. J. ProtoMatch: A tool for analyzing high-density, sequential eye gaze and cursor protocols // Behavior Research Methods. 2005. № 37. Р. 256–270.
  43. Patalano A. L., Juhasz B. J., Dicke О. The Relationship Between Indecisiveness and Eye Movement Patterns in a Decision Making Informational Search Task // Journal of Behavioral Decision Making. 2010. № 23. Р. 353–368.
  44. Ponsoda V., Scott D., Findlay J. M. A probability vector and transition matrix analysis of eye movements during visual search // Acta Psychologica. 1995. № 88. Р. 167–185.
  45. Rabiner L. R. A tutorial on hidden Markov models and selected applications in speech recognition // Proceedings of the IEEE. 1989. № 77. Р. 257–286.
  46. Rasch G. Probabilistic models for some intelligence and attainment tests / Еxpanded edition with foreword and afterword by B. D. Wright. Chicago: The University of Chicago Press. 1980.
  47. Rayner K. Eye movements in reading and information processing: 20 years of research // Psychological Bulletin. 1998. № 124. P. 372–422.
  48. Salvucci D. D., Anderson J. R. Automated eye-movement protocol analysis // Human-Computer Interaction. 2001. № 16. Р. 39–86.
  49. Simola J., Salojarvi, Kojo I. Using hidden Markov model to uncover processing states from eye movements in information search tasks // Cognitive Systems Research. 2008. № 9. Р. 237–251.
  50. Van der Lans R., Pieters R., Wedel M. Eyemovement analysis of search effectiveness // Journal of the American Statistical Association. 2008. № 103. Р. 452–461.
  51. Vigneau F., Caissie A., Bors D. Eye-movement analysis demonstrates strategic influences on intelligence // Intelligence. 2006. № 34. P. 261–272.
  52. Wright B. D., Masters G. N. Rating scale analysis. Rasch measurements. Chicago: MESA Press, 1982.
  53. Wright B. D., Stone M. N. Best Test Design. Chicago: MESA Press, 1979.
comments powered by Disqus
 
About PsyJournals.ru

© 1997–2019 Portal of Russian Psychological Publications. All rights reserved

PsyJournals.ru in Russian

Publisher: Moscow State University of Psychology and Education

Catalogue of academic journals in psychology & education MSUPE

Creative Commons License

RSS Psyjournals at facebook Psyjournals at Twitter Psyjournals at Youtube Яндекс.Метрика