Previous issue (2019. Vol. 12, no. 2)
Included in Web of Science СС (ESCI)
|
|
Experimental study of working memory in children and adults in the task of delayed reproduction of visual presented sequences 1410
Korneev A.A., PhD in Psychology, Senior Research Fellow, Laboratory of Neuropsychology, Department of Psychology, M.V. Lomonosov Moscow State University, Moscow, Russia, korneeff@gmail.com Lomakin D.I., Junior research associate, Laboratory of Neurophysiology of Cognitive Processes, Institute of Developmental Physiology, dimalomakin4@gmail.com
The results of experimental study of memorizing and delayed reproduction (copying) of unfamiliar contour shapes in children and adult subjects are presented in the article. We analyzed the age-related characteristics of retention of the shapes (sequences) in working memory. 21 children (average age 7.2 y.o) participated in the experiment. They were shown trajectories (consisted of 6 vertical and horizontal lines) and were asked to remember and to reproduce them after acoustical go signal (short click). Go signal was delayed relatively to the end of trajectories exposure by T = 0, 500, 1000, 2000 or 4000 ms. We analyzed the number of errors, reaction time (RT), mean movement time (MT) along a single segment of trajectory, and the mean dwell time (DT) in the vertices of the trajectory. We compared the results with the analogous data collected previously in the sample of adult subjects. The analysis shows that children made more errors. Beside among children the accuracy of the reproduction decreases whit increasing of the delay of go signal. Also it is shown that RT depends on the delay T, and the shape of the dependence is similar among both children and adults. The results allow to assume the transformation of primary sensory-specific representation in an abstract representation of the sequence both in children and in adults.
This work was supported by grant RSF № 14-18-037037.
- Antonova A.A., Absatova K.A., Korneev A.A., Kurganskii A.V. Otsrochennoe
dvigatel'noe vosproizvedenie nezamknutykh poligonov, zadannykh staticheskim i
dinamicheskim zritel'nym obraztsom: sravnenie detei 9–11 let i vzroslykh [A
delayed motor production of open chains of linear strokes presented visually in
static and dynamic modes: a comparison between 9 to 11 years old children and
adults.]. Fiziologiya cheloveka [Human Physiology]. 2013, vol.
41, no. 2, p. 38–45 (In Russian; abstract in English)
- Zaitsev A.V., Lupandin V.I., Surina O.E. Vozrastnaya dinamika vremeni
reaktsii na zritel'nye stimuli [Age Dynamics of the Time of Reaction to Visual
Stimuli]. Fiziologiya cheloveka [Human Physiology]. 1999, vol.
25, no. 6, p. 34–37.
- Korneev A. A., Kurganskii A. V. Vnutrennyaya reprezentatsiya serii
dvizhenii pri vosproizvedenii staticheskogo risunka i traektorii
dvizhushchegosya ob»ekta [Internal Representation of Movement Sequences on
Reproduction of Static Drawings and the Trajectories of Moving Objects].
Zhurn. vyssh. nerv. deyatel’nosti im. IP Pavlova [IP Pavlov Journal of
Higher Nervous Activity]. 2013, vol. 63, no. 4, p. 437–450.
- Korneev A.A., Lomakin D.I., Kurganskii A.V. Otsrochennoe kopirovanie
neznakomykh konturnykh izobrazhenii: otrazhaet li ubyvanie vremeni reaktsii s
rostom zaderzhki izmenenie vnutrennego predstavleniya budushchego dvizheniya
[Delayed Copying of Unfamiliar Contour Shapes: Does Reaction Time Decrease with
Growing Delay Reflect a Change in Internal Representation Of Fothcoming
Movement?]. Zhurn. vyssh. nerv. deyatel’nosti im. IP Pavlova [IP Pavlov
Journal of Higher Nervous Activity]. 2016, vol. 66, no 1, p. 51–61.
- Semenova O. A., Koshel'kov D. A., Machinskaya R. I. Vozrastnye izmeneniya
proizvol'noi regulyatsii deyatel'nosti v starshem doshkol'nom i mladshem
shkol'nom vozraste [Age-Specific Changes of Activity Self-Regulation in
Preschool-Age and Early School-Age Children]. Kul’turno-istoricheskaya
psikhologiya [Cultural-Historical Psychology]. 2007, no 4, p.
39–49.
- Alloway T. P., Alloway R. G. Investigating the predictive roles of working
memory and IQ in academic attainment. Journal of experimental child
psychology. – 2010, vol. 106, no 1, p. 20–29. doi: 10.1016/j.
jecp.2009.11.003
- Baddeley A. D., Hitch G. J. Developments in the concept of working memory.
Neuropsychology. 1994, vol. 8, no 4, p. 485–493. doi:
10.1037/0894-4105.8.4.485
- Baddeley A. D., Hitch G. Working memory. Psychology of learning
and motivation. 1974, vol. 8, p. 47–89.
- Bays P. M., Husain M. Dynamic shifts of limited working memory resources in
human vision. Science. 2008, vol. 321, no 5890, p. 851–854. doi:
10.1126/science.1158023
- Diamond A. The early development of executive functions. In E. Bialystock
& F. I. M. Craik (ed.), Lifespan cognition: Mechanisms of change.
Oxford, England: Oxford University Press, 2006, p. 70–95.
- Heyes S. B., Zokaei N., van der Staaij I., Bays P. M., Husain M.
Development of visual working memory precision in childhood. Developmental
science. 2012, vol. 15, no 4, p. 528–539. doi: 10.1111/j.1467-
7687.2012.01148.x
- Heyes S. B., Zokaei N., Husain M. Longitudinal development of visual
working memory precision in childhood and early adolescence. Cognitive
Development. 2016, vol. 39, p. 36–44. doi: 10.1016/j.
cogdev.2016.03.004
- Hurlstone M. J., Hitch G. J., Baddeley A. D. Memory for serial order across
domains: An overview of the literature and directions for future research.
Psychological bulletin. 2014, vol. 140, no 2, p. 339–373.
doi: 10.1037/a0034221
- Hurlstone M. J., Hitch G. J. How is the serial order of a spatial sequence
represented? Insights from transposition latencies. Journal of Experimental
Psychology: Learning, Memory, and Cognition. 2015, vol. 41, no 2, p.
295–324. doi: 10.1037/a0038223
- Kiselev S., Espy K. A., Sheffield T. Age-related differences in reaction
time task performance in young children. Journal of Experimental Child
Psychology. 2009, vol. 102, no 2, p. 150–166. doi: 10.1016/j.
jecp.2008.02.002
- Los S. A., Horoufchin H. Dissociative patterns of foreperiod effects in
temporal discrimination and reaction time tasks. The Quarterly Journal of
Experimental Psychology. 2011, vol. 64, no 5, p. 1009–1020. doi:
10.1080/17470218.2010.532225
- Meulemans T., Van der Linden M., Perruchet P. Implicit sequence learning in
children. Journal of experimental child psychology. 1998, vol. 69, no 3,
pp 199–221. doi: 10.1006/jecp.1998.2442
- Nelson K. Development of representation in childhood/ E. Bialystock &
F. I. M. Craik (ed.), Lifespan cognition: Mechanisms of change. Oxford,
England: Oxford University Press, 2006, p. 178–192.
- Pickering S. J. The development of visuo-spatial working memory.
Memory. 2001, vol. 9, no 4–6, p. 423– 432. doi:
10.1080/09658210143000182
- Repovš G., Baddeley A. The multi-component model of working memory:
explorations in experimental cognitive psychology. Neuroscience. 2006,
vol. 139, no 1, p. 5–21. doi: 10.1016/j.neuroscience.2005.12.061
- Schutte A. R., Spencer J. P. Tests of the dynamic field theory and the
spatial precision hypothesis: Capturing a qualitative developmental transition
in spatial working memory. Journal of Experimental Psychology: Human
Perception and Performance. 2009, vol. 35, no 6, p. 1698–1725. doi:
10.1037/a0015794
- Simmering V. R., Patterson R. Models provide specificity: Testing a
proposed mechanism of visual working memory capacity development. Cognitive
development. 2012, vol. 27, no 4, p.
419–439. doi: 10.1016/j.cogdev.2012.08.001
- Spelke, E. S. What makes us smart? Core knowledge and natural language. In
D. Gentner & S. Goldin- Meadow (ed.), Language in mind: Advances in the
study of language and thought. Cambridge, MA: MIT Press., 2003, pp.
277–312
- Verwey W. B., Shea C. H., Wright D. L. A cognitive framework for explaining
serial processing and sequence execution strategies. Psychonomic
bulletin & review. 2015, vol. 22, no 1, p. 54–77. doi:
10.3758/ s13423-014-0773-4
|
|