|
|
Psychophysiological and molecular genetic correlates of fatigue 872
Polikanova I.S., PhD in Biology, Moscow, Russia, irinapolikanova@mail.ru Leonov S.V., PhD in Psychology, Assistant professor, Psychology faculty of M. V. Lomonosov Moscow State University, Moscow, Russia, svleonov@gmail.com
The article is devoted to a theoretical overview in the field of fatigue, and in particular to recent data on psychophysiological and molecular-genetic correlates of fatigue. Nowadays there exist many methods used to assess fatigue and other functional states: subjective, behavioral and physiological methods. Earlier the studies in the area of fatigue were mainly focused on looking for an objective indicator. The current research focuses on an integral approach. Over recent years the significant progress in molecular biology has been achieved, which provided a significant impact on quality and scope of investigations. Now we can find numerous researches which reflect the link between the presence of certain polymorphisms and expression of behavioral patterns or physiological reactions. Thus, in the present study we make an attempt to reflect the existing psycho-physiological and molecular-genetic correlates of fatigue.
- Kulikova M.A. et al. Vlijanie funkcional'nogo polimorfizma Val158Met
katehol-O-metiltransferazy na fizicheskuju agressivnost' [Effect of functional
catechol-o-methyltransferase val158met polymorphism on physical aggression].
Bjulleten' jeksperimental'noj biologii i mediciny [Bulletin of experimental
biology and medicine], 2008. Vol. 145, no. 1, pp. 68-71. (In Russ.).
- Nikolls Dzh.G. et al. Ot nejrona k mozgu [From neuron to brain]. Moscow:
Izdatel'stvo LKI, 2008. 672 p. (In Russ.).
- Polikanova I.S., Sergeev A.V. Vlijanie dlitel'noj kognitivnoj nagruzki na
parametry JeJeG [Elektronnyi resurs] [The effect of long-term cognitive load on
the EEG parameters]. Nacional'nyj psihologicheskij zhurnal [National
psychological journal], 2014. Vol. 1. no. 13, pp. 84-92. URL:
http://cyberleninka.ru/article/n/vliyanie-dlitelnoy-kognitivnoy-nagruzki-na-parametry-eeg
(Accessed: 10.01.2017). (In Russ., Abstr. in Engl.).
- Zinchenko Yu.P. et al. Psikhologiya sporta [Sports psychology]. Moscow:
Izd-vo Mosk. un-ta, 2011. 424 p.(In Russ.)
- Erisman F.F. Professional'naya gigiena ili gigiena umstvennogo i
fizicheskogo truda [Professional hygiene or hygiene of mental and physical
labor]. Spb.: Tip. M.M. Stasyulevicha, 1877. 406 p. (In Russ.).
- Kidd K.K. et al. A global survey of haplotype frequencies and linkage
disequilibrium at the DRD2 locus. Human Genetics, 1998. Vol. 103, no. 2, pp.
211–227. doi: 10.1007/s004390050809
- Goljahani A. et al. A novel method for the determination of the EEG
individual alpha frequency. Neuroimage, 2012. Vol. 60, no. 1, pp. 774–786. doi:
10.1016/j.neuroimage.2011.12.001
- Adayev T., Ranasinghe B., Banerjee P. Transmembrane signaling in the brain
by serotonin, a key regulator of physiology and emotion. Bioscience Reports,
2005. Vol. 25, no. 5–6, pp. 363–385. doi: 10.1007/s10540-005-2896-3
- Sysoeva O.V. et al. Aggression and 5HTT polymorphism in females: Study of
synchronized swimming and control groups. International Journal of
Psychophysiology, 2009. Vol. 72, no. 2. pp. 173–178. doi:
10.1016/j.ijpsycho.2008.12.005
- Jones G. et al. Aggressive behaviour in patients with schizophrenia is
associated with catechol-O-methyltransferase genotype. The British Journal of
Psychiatry, 2001. Vol. 179, no. 4, pp. 351–355. doi: 10.1192/bjp.179.4.351
- Strous R.D. et al. Analysis of a functional catechol O-methyltransferase
gene polymorphism in schizophrenia: evidence for association with aggressive
and antisocial behavior. Psychiatry Research, 1997. Vol. 69, no. 2–3, pp.
71–77. doi: 10.1016/S0165-1781(96)03111-3
- Lachman H.M. et al. Association between catechol O-methyltransferase
genotype and violence in schizophrenia and schizoaffective disorder
[Elektronnyi resurs]. American Journal of Psychiatry, 1998. Vol. 155, no. 6,
pp. 835–837. Available at:
http://ajp.psychiatryonline.org/doi/pdf/10.1176/ajp.155.6.835 (Accessed
11.01.2017).
- Bolton J.L. et al. Association between polymorphisms of the dopamine
receptor D2 and catechol-o-methyl transferase genes and cognitive function.
Behavior Genetics, 2010. Vol. 40, no. 5, pp. 630–638. doi:
10.1007/s10519-010-9372-y
- Narita M. et al. Association between serotonin transporter gene
polymorphism and chronic fatigue syndrome. Biochemical and Biophysical Research
Communications, 2003. Vol. 19, no. 11, pp. 1348–1351. doi:
10.1002/mds.20191
- Blum K. et al. Association of polymorphisms of dopamine D2 receptor (DRD2),
and dopamine transporter (DAT1) genes with schizoid/avoidant behaviors (SAB).
Molecular Psychiatry, 1997. Vol. 2, no. 1, pp. 239–246. doi:
10.1016/S0006-3223(97)88120-6
- Balaban C.D. Neural substrates linking balance control and anxiety.
Physiology&Behavior, 2002. Vol. 77, no. 4–5, pp. 469–475. doi:
10.1016/S0031-9384(02)00935-6
- Blomstrand E. Amino acids and central fatigue. Amino Acids, 2001. Vol. 20,
no. 1, pp. 25–34. doi: 10.1007/s007260170063
- Boksem M.A.S., Meijman T.F., Lorist M.M. Mental fatigue, motivation and
action monitoring. Biological Psychology, 2006. Vol. 72, no. 2, pp.
123–132. doi: 10.1016/j.biopsycho.2005.08.007
- Gosso M.F. et al. Catechol O-methyl transferase and dopamine D2 receptor
gene polymorphisms: evidence of positive heterosis and gene-gene interaction on
working memory functioning. The American Journal of Human Genetics, 2008. Vol.
16, pp. 1075–1082. doi: 10.1038/ejhg.2008.57
- Cheng S.Y., Hsu H.T. Mental Fatigue Measurement Using EEG. Risk Management
Trends. Ed. By Giancarlo Nota. 2011. pp. 266.
- Binnie C.D. et al. Clinical neurophysiology: Electroencephalography,
Paediatric Neurophysiology, Special Techniques and Applications. Vol. 2.
Amsterdam; London: Elsevier, 2003. 993 p.
- Barnett J.H. et al. Cognitive effects of genetic variation in monoamine
neurotransmitter systems: a population-based study of COMT, MAOA, and 5HTTLPR.
American Journal of Medical Genetics Part B Neuropsychiatric Genetics, 2011.
Vol. 156, no. 2, pp. 158–167. doi: 10.1002/ajmg.b.31150
- Thompson J. et al. D2 dopamine receptor gene (DRD2) TaqI A polymorphism:
Reduced D2 receptor binding in the human striatum associated with the A1
allele. Pharmacogenetics, 1997. Vol. 7, no. 6, pp. 479–484.
- Davis J.M. Carbohydrates, branched-chain amino acids, and endurance: the
central fatigue hypothesis. International journal of sport nutrition, 1995.
Vol. 5, no. s1. pp. S29–S38.
- Davis J.M., Alderson N.L., Welsh R.S. Serotonin and central nervous system
fatigue: nutritional consideration. The American Journal of Clinical Nutrition,
2000. Vol. 72, no. 2, pp. 573–578.
- Davis J.M., Bailey S.P. Possible mechanisms of central nervous system
fatigue during exercise. Medicine and Science in Sport and Exercise, 1997. Vol.
29, no. 1, pp. 45–57. doi: 10.1097/00005768-199701000-00008
- Tsai S.J. et al. Dopamine D2 receptor and N-methyl-D-aspartate receptor 2B
subunit genetic variants and intelligence. Neuropsychobiology, 2002. Vol. 45,
no. 3, pp. 128–130. doi: 10.1159/000054951
- Trejo L.J. et al. EEG-based Estimation of Cognitive Fatigue [Elektronnyi
resurs]. Proceedings of Symposium OR05 Defense and Security, 2005. Vol. 5797,
pp. 105–115. Available at:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.330.2239&rep=rep1&type=pdf
(Accessed 10.01.2017)
- Trejo L.J. et al. EEG-Based Estimation of Mental Fatigue: Convergent
Evidence for a Three-State Model. Foundations of Augmented Cognition / Eds.
D.D. Schmorrow, L.M. Reeves. Berlin: Springer,, 2007. Vol. 4565, pp.
201–211.
- Epstein H.T. EEG developmental stages. Developmental Psychobiology, 1980.
Vol. 13, no. 6, pp. 629–631. doi: 10.1002/dev.420130608
- Fatigue as a Window to the Brain. Ed. By DeLuca E. Cambridge, London: The
MIT Press, 2005. P. 357.
- Fernstrom J.D., Fernstrom M.H. Exercise, serum free tryptophan, and central
fatigue. Journal of Nutrition, 2006. Vol. 136, no. 2, pp. 553–559.
- Foley T.E., Fleshner M. Neuroplasticity of dopamine circuits after
exercise: implications for central fatigue. NeuroMolecular Medicine, 2008. Vol.
10, no. 2, pp. 67–80. doi: 10.1007/s12017-008-8032-3
- Joyce N.J. et al. Human striatal dopamine receptors are organized in
compartments [Elektronnyi resurs]. PNAS, 1986. Vol. 83, no. 20, pp. 8002–8006.
Available at:
https://www.researchgate.net/profile/Jeffrey_Joyce/publication/20211466_Human_striatal_dopamine_receptors_are_organized_in_patches/links/00b495169e8fe12569000000.pdf
(Accessed 11.01.2017).
- Reuter M. et al. Identification of first candidate genes for creativity: A
pilot study. Brain Research, 2006. Vol. 1069, no. 1, pp. 190–197. doi:
10.1016/j.brainres.2005.11.046
- Kaasinen V. et al. Insular dopamine D2 receptors and novelty seeking
personality in Parkinson's disease. Movement Disorders, 2004. Vol. 19, no. 11,
pp. 1348–1351. doi: 10.1002/mds.20191
- Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory
performance: a review and analysis. Brain Research Reviews, 1999. Vol. 29, no.
2–3, pp. 169–195. doi: 10.1016/S0165-0173(98)00056-3
- Klimesch W. EEG-alpha rhythms and memory processes. International Journal
of Psychophysiology, 1997. Vol. 26, no. 1–3, pp. 319–340. doi:
10.1016/S0167-8760(97)00773-3
- Knight J.L., Kantowitz B.H. Speed-accuracy tradeoff in double stimulation:
Effects on the first response. Memory & Cognition, 1974. Vol. 2,
no. 3, pp. 522–532. doi: 10.3758/BF03196915
- Lal S., Bekiaris E. The Reliability of Sensing Fatigue from Neurophysiology
[Elektronnyi resurs]. Auswireless Conference, University of Technology, Sydney.
2007. Available at: https://opus.lib.uts.edu.au/handle/2100/87 (Accessed
10.01.2017).
- Lesch K.P., Merschdorf U. Impulsivity, aggression, and serotonin: a
molecular psychobiological perspective. Behavioral Sciences & the Law,
2000. Vol. 18, no. 5, pp. 581–604. doi:
10.1002/1099-0798(200010)18:5<581::AID-BSL411>3.0.CO;2-L
- Lorist M.M., Boksem M.A.S., Ridderinkhof K.R. Impaired cognitive control
and reduced cingulate activity during mental fatigue. Cognitive Brain Research,
2005. Vol. 24, no. 2, pp. 199–205. doi: 10.1016/j.cogbrainres.2005.01.018
- Meeusen R., Watson P. Amino acids and the brain: do they play a role in
“central fatigue”? International journal of sport nutrition and exercise, 2007.
Vol. 17, pp. 37–46. doi: 10.1123/ijsnem.17.s1.s37
- Lorist M.M. et al. Mental fatigue and task control: Planning and
preparation. Psychophysiology, 2000. Vol. 37, no. 5, pp. 614–625. doi:
10.1111/1469-8986.3750614
- Murataa A., Uetakeb A., Takasawab Y. Evaluation of mental fatigue using
feature parameter extracted from event-related potential. Journal of Industrial
Ergonomics, 2005. Vol. 35, no. 8, pp. 761–770. doi:
10.1016/j.ergon.2004.12.003
- Newsholme E.A., Blomstrand E. Tryptophan 5-hydroxytryptamine and a possible
explanation for central fatigue. Advances in Experimental Medicine and Biology,
1995. Vol. 384, pp. 315–320.
- Newsholme E.A., Blomstrand E., Ekblom B. Physical and mental fatigue:
metabolic mechanisms and importance of plasma amino acids. British Medical
Bulletin, 1992. Vol. 48, no. 3, pp. 477–95. doi:
10.1093/oxfordjournals.bmb.a072558
- Nieoullon A. Dopamine and the regulation of cognition and attention.
Progress in Neurobiology, 2002. Vol. 67, no. 1, pp. 53–83. doi:
10.1016/S0301-0082(02)00011-4
- Salamone J.D. et al. Nucleus accumbens dopamine and rate of responding:
Neurochemical and behavioral studies. Psychobiology, 1999. Vol. 27, no. 2, pp.
236–247. doi: 10.3758/BF03332117
- Ollman R. Fast guess in choice reaction time. Psychonomic Science, 1966.
Vol. 6, no. 4, pp. 155–156. doi: 10.3758/BF03328004
- Palmatier M.A., Kang A.M., Kidd K.K. Global variation in the frequencies of
functionally different catechol-O-methyltransferase alleles. Biological
Psychiatry, 1999. Vol. 46, no. 4, pp. 557–567. doi:
10.1016/S0006-3223(99)00098-0
- Angelakis E. et al. Peak alpha frequency: an electroencephalographic
measure of cognitive preparedness. Clinical Neurophysiology, 2004. Vol. 115,
no. 4, pp. 887–897. doi: 10.1016/j.clinph.2003.11.034
- Petersen I., Eeg-Olofsson O. The development of the electroencephalogram in
normal children from the age of 1 through 15 years – Non-paroxysmal activity.
Neuropаdiatrie, 1971. Vol. 2, no. 3, pp. 375–404.
- Polikanova I.S., Sysoeva O.V., Tonevitsky A.G. Association between
serotonin transporter (5HTT) and mental fatigue development [Elektronnyi
resurs]. Psikhologicheskie Issledovaniya, 2012. Vol. 5, no. 24. Available at:
http://psystudy.ru/index.php/eng/2012v5n24e/717-polikanova24e.html (Accessed
12.01.2017).
- Polikanova I.S., Sysoeva O.V., Tonevitsky A.G. Association between 5HTT
polymorphism and cognitive fatigue development. International Journal of
Psychophysiology (Special Issue), 2012. Vol. 3, no. 85, pp. 411–411. doi:
10.1016/j.ijpsycho.2012.07.128
- Ritchie T., Noble E.P. Association of seven polymorphisms of the D2
dopamine receptor gene with brain receptor-binding characteristics.
Neurochemical Research, 2003. Vol. 28, no. 1, pp. 73–82. doi:
10.1023/A:1021648128758
- Salamone J.D. Involvement of nucleus accumbens dopamine in behavioral
activation and effort-related functions: Dopamine handbook. Oxford; New York :
Oxford University Press, 2010. 286 p.
- Salamone J.D. Motor function and motivation. In G.F Koob, M.L. Moal, R.F.
Thompson (eds.). Encyclopedia of behavioral neuroscience. London: Academic
Press, 2010. pp. 267–276.
- Liu J. Z. et al. Shifting of activation center in the brain during muscle
fatigue: an explanation of minimal central fatigue? Neuroimage, 2007. Vol. 35,
no. 1, pp. 299–307. doi: 10.1016/j.neuroimage.2006.09.050
- Stein D.J., Stahl S. Serotonin and anxiety: current models. International
Clinical Psychopharmacology, 2000. Vol. 15, pp. 1–6.
- Tamminga C.A., Nemeroff C.B., Blakely R.D. Developing novel treatments for
mood disorders: accelerating discovery. Biological Psychiatry, 2002. Vol. 52,
no. 6, pp. 589–609. doi: 10.1016/S0006-3223(02)01470-1
- Fernandez T. et al. Test–retest reliability of EEG spectral parameters
during cognitive tasks: I. Absolute and relative power. International Journal
of Neuroscience, 1993. Vol. 68, no. 3–4, pp. 255–261. doi:
10.3109/00207459308994281
- Lorista M.M. et al. The influence of mental fatigue and motivation on
neural network dynamics; an EEG coherence study. Brain Research, 2009. Vol.
1270, pp. 95–106. doi: 10.1016/j.brainres.2009.03.015
- Barnes J.M. et al. The Molecular Genetics of Executive Function: Role of
Monoamine System Genes. Biological Psychiatry, 2011. Vol. 69, no. 12, pp.
127–143. doi: 10.1016/j.biopsych.2010.12.040
- Jap B.T. et al. Using EEG spectral components to assess algorithms for
detecting fatigue. Expert Systems with Applications, 2009. Vol. 36, no. 2, pp.
2352–2359. doi: 10.1016/j.eswa.2007.12.043
- Weicker H., Strüder H.K. Influence of exercise on serotonergic
neuromodulation in the brain. Amino Acids, 2001. Vol. 20, no. 1, pp. 35–47.
doi: 10.1007/s007260170064
- Wickelgren W.A. Speed-accuracy tradeoff and information processing
dynamics. Acta Psychologica, 1977. Vol. 41, no. 1, pp. 67–85. doi:
10.1016/0001-6918(77)90012-9
- Wijesuriya N., Tran Y., Craig A. The psychophysiological determinants of
fatigue. International Journal of Psychophysiology, 2007. Vol. 63, no. 1, pp.
77–86. doi: 10.1016/j.ijpsycho.2006.08.005
- Wood C.C., Jennings J.R. Speed-accuracy tradeoff functions in choice
reaction time: Experimental designs and computational procedures. Perception
& Psychophysics, 1976. Vol. 19, no. 1, pp. 92–102. doi:
10.3758/BF03199392
- Yellott Jr., John I. Correction for fast guessing and the speed-accuracy
tradeoff in choice reaction time. Journal of Mathematical Psychology, 1971.
Vol. 8, no. 2, pp. 159–199. doi: 10.1016/0022-2496(71)90011-3
|
|