Color discrimination and color categories

899

Abstract

The subjective boundary in colour space between reddish and greenish hues is not aligned with either of the chromatic channels that have been found by electrophysiological recordings from the retina and the lateral geniculate nucleus of primates (Derrington, Krauskopf & Lennie, 1984). Yet we found that chromatic discrimination is enhanced in the vicinity of the perceptual red-green boundary. Thresholds were measured for brief (100-msec) foveal stimuli using a spatial forced-choice procedure: observers were required to judge whether the left or the right half of a bipartite field was the greener. In interleaved runs we also obtained empirical estimates of the subjective boundary between reddish and greenish colours. Both types of measurements (performance measurements of thresholds and subjective judgements of hue) were made in the presence of a steady background that was metameric to CIE Illuminant D65. To exclude the possibility that larger thresholds in more distant areas from the blue-yellow line arise because of uncertainty in correctly ordering colours that lay within the same category, we ran a control experiment. In this experiment, the task was still a criterion-free forced choice, but the observer had to judge only whether a difference of chromaticity was present. A minimum of the subjects correctly completed this task. Byzov classically proposed the general rule that sensory neural channels are maximally sensitive to perturbations around the activity level set by the background. In the present case, the chromaticities that give the lowest threshold are chromaticities that lie along the subjective red-green hue boundary, implying a neural channel that is aligned with the red-green axis of colour space.

General Information

Keywords: colour vision, chromaticity diagram, colour discrimination, colour categories, unique hues, psychophysics

Journal rubric: Psychology of Perception

Article type: scientific article

For citation: Danilova M.V., Mollon J.D. Color discrimination and color categories. Eksperimental'naâ psihologiâ = Experimental Psychology (Russia), 2010. Vol. 3, no. 3, pp. 39–56. (In Russ., аbstr. in Engl.)

References

  1. Byzov A. L., Kuznecova L. P. Adaptacija zritel'noj sistemy // Nejrofiziologija. 1969. № 1. S. 81–89.
  2. Izmajlov A., Sokolov E. N., Chernorizov A. M. Psihofiziologija cvetovogo zrenija. M.: Moskovskij universitet. 1989.
  3. Korzh N. N., Penova I. V., Safuanova O. V. Denotativnye znachenija cvetonaimenovanij // Psihologicheskij zhurnal. 1991. № 12 (4). S. 69–79.
  4. Rautian G. N., Solov'eva V. P. Vlijanie svetlogo okruzhenija na ostrotu cvetorazlichenija. Doklady Akademii nauk SSSR. 1954. S. 513–515.
  5. Sokolov E. N., Vartanov A. V. K issledovaniju semanticheskogo cvetovogo prostranstva // Psihologicheskij zhurnal. 1987. № 8 (2). P. 58–65.
  6. Beer R. D., Dinca A., MacLeod D. I. A. Ideal white can be yellowish or bluish, but not reddish or greenish // Journal of Vision. 2006. № 6 (6). P. 417–417.
  7. Boynton R. M., Nagy A. L., Olson C. X. A flaw in equations for predicting chromatic differences // Color Research & Application. 1983. № 8. P. 69–74.
  8. Burns S. A., Elsner A. E., Pokorny J., Smith, V. C. The Abney effect: chromaticity coordinates of unique and other contrast hues // Vision Res. 1984. № 24 (5). P. 479–489.
  9. Cole G. R., Hine T. Computation of cone contrasts for colour vision research // Behavioral Research Methods, Instruments and Computers. 1992. № 24. P. 22–27.
  10. Dacey D. M., Lee B. B. The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type // Nature. 1994. № 367. P. 731–735.
  11. Danilova,M. V., Mollon J. D. Parafoveal color discrimination: A chromaticity locus of enhanced discrimination // Journal of Vision. 2010. № 10(1):4. P. 1–9, http://journalofvision.org/10/1/4/, doi:10.1167/10.1.4
  12. Dartnall H. J. A., Bowmaker J. K., Mollon J. D. Human visual pigments: microspectrophotometric results from the eyes of seven persons // Proc. R. Soc. 1983. B. 220. P. 115–130.
  13. De Monasterio F. M., Gouras P., Tolhurst D. J. Trichromatic colour opponency in ganglion cells of the rhesus monkey retina // J. Physiol. 1975. № 251. P. 197–216.
  14. De Valois R. L., Abramov I., Mead W. R. Single cell analysis of wavelength discrimination at lateral geniculate nucleus in macaque // J. Neurophysiol. 1967. № 30. P. 415–433.
  15. DeMarco P. J., Pokorny J., Smith V. C. Full-spectrum cone sensitivity functions for X-chromosome linked anomalous trichromats // J. Opt. Soc. Am. A. 1992. № 9. P. 1465–1476.
  16. Derrington A. M., Krauskopf J., Lennie P. Chromatic mechanisms in lateral geniculate nucleus of macaque // J. Physiol. 1984. № 357. P. 241–265.
  17. Jordan G., Mollon J. D. Rayleigh matches and unique green // Vision Res. 1995. № 35 (5). P. 613–620.
  18. Jordan G., Mollon J. D. Unique hues in heterozygotes for protan and deutan deficiencies // C. R. Cavonius (Ed.) Colour Vision Deficiencies. Dordrecht: Kluwer. 1997. Р. 67–76.
  19. Krauskopf J., Gegenfurtner K. Color discrimination and adaptation // Vision Res. 1992. № 32 (11). P. 2165–2175.
  20. Liberman A. M., Harris K. S., Hoffman H. S., Griffith B. C. The discrimination of speech sounds within and across phoneme boundaries // J. Exp. Psychol. 1957. № 54. P. 358–368.
  21. Loomis J. M., Berger T. Effects of chromatic adaptation on color discrimination and color appearance // Vision Res. 1979. № 19. P. 891–901.
  22. MacLeod D. I. A., Boynton R. M. Chromaticity diagram showing cone excitation by stimuli of equal luminance // J. Opt. Soc. Am. 1979. № 69. P. 1183–1185.
  23. Miyahara E., Smith, V. C., Pokorny J. How surrounds affect chromaticity discrimination // J. Opt. Soc. Am. A. 1993. № 10. P. 545–553.
  24. Mollon J. D. A neural basis for unique hues? // Current Biology. 2009. № 19. P. 441–442.
  25. Mollon J. D., Cavonius C. R. The chromatic antagonisms of opponent process theory are not the same as those revealed in studies of detection and discrimination // G. Verriest (Ed.) Colour Vision Deficiencies VIII. 1987. Dordrecht: Martinius Nijhoff/Dr. W. Junk. Р. 473–483.
  26. Nerger J. L., Volbrecht V. J., Ayde C. J. Unique hue judgements as a function of test size in the fovea and at 20-deg temporal eccentricity // J. Opt. Soc. Am. A. 1995. № 12 (6). P. 1225–1232.
  27. Purdy D. M. Spectral hue as a function of intensity. The American Journal of psychology. 1931. № 43 (4). P. 541–559.
  28. Regan B. C., Reffin J. P., Mollon J. D. Luminance noise and the rapid determination of discrimination ellip-ses in colour deficiency // Vision Res. 1994. № 34 (10). P. 1279–1299.
  29. Roberson D., Hanley J. R., Pak H. Thresholds for color discrimination in English and Korean speakers // Cognition. 2009. № 112. P. 482–487.
  30. Schnapf, J.L., Kraft, T.W., & Baylor, D.A. Spectral sensitivity of human cone photoreceptors // Nature. 1987. № 325. P. 439–441.
  31. Smith V. C., Pokorny J. Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm // Vision Res. 1975. № 15. P. 161–171.
  32. Smith V. C., Pokorny J. Chromatic-discrimination axes, CRT phosphor spectra, and individual variation in color vision // J. Opt. Soc. Am. A. 1995. № 12 (1). P. 27–35.
  33. Stoughton C. M., Conway B. R. Neural basis for unique hues // Current Biology. 2008. № 18. P. 698–699.
  34. Valberg A., Lee B. B., Tigwell D. A. Neurons with strong inhibitory S-cone inputs in the macaque lateral geniculate nucleus // Vision Res. 1986. № 26. P. 1061–1064.
  35. Webster M. A., Webster S. M., Bharadwaj S., Verna R., Jaikumar J., Madan G., Vaithilingham E. Variations in normal color vision. III. Unique hues in Indian and United States observers // J. Opt. Soc. Am. A. 2002. № 19 (10). P. 1951–1962.
  36. Wetherill G. B., Levitt H. Sequential estimation of points on a psychometric function // British Journal of Mathematical and Statistical Psychology. 1965. № 18. P. 1–10.
  37. Winawer J., Witthoft N., Frank M. C., Wu L., Wade A. R., Boroditsky L. Russian blues reveal effects of language on color discrimination // Proceedings of the National Academy of Sciences of the United States of America. 2007. № 104 (19). P. 7780–7785.
  38. Witzel C., Hansen, T., Gegenfurtner K. R. Categorical reaction times for equally discriminable colours // Perception. 2009. № 38(suppl). 14.
  39. Wyszecki G., Stiles W. S. Color Science. Concepts and Methods, Quantitative Data and Formulae. John Wiley & Sons. 1982.

Information About the Authors

Marina V. Danilova, PhD in Biology, Leading Researcher, Laboratory of physiology of vision, Pavlov Institute of Physiology, St.Petersburg, Russia, e-mail: mar.danilova@gmail.com

J. D. Mollon, Professor of Visual Neuroscience Department of Experimental Psychology, University of Cambridge, e-mail: jm123@cam.ac.uk

Metrics

Views

Total: 3461
Previous month: 26
Current month: 4

Downloads

Total: 899
Previous month: 4
Current month: 0