Russian Psychological Issues PsyJournals.ru
OPEN ACCESS JOURNALS
JournalsTopicsAuthorsEditor's Choice About PsyJournals.ruContact Us

  Previous issue (2019. Vol. 24, no. 3)

Included in Web of Science СС (ESCI)

CrossRef

Psychological Science and Education

Publisher: Moscow State University of Psychology and Education

ISSN (printed version): 1814-2052

ISSN (online): 2311-7273

DOI: http://dx.doi.org/10.17759/pse

License: CC BY-NC 4.0

Started in 1996

Published 6 times a year

Free of fees
Open Access Journal

 

The concept of Decision Support System for psychological testing 820

Kuravsky L.S., Doctor of Engineering, Dean of the Computer Science Faculty , Moscow State University of Psychology and Education , Moscow, Russia, l.s.kuravsky@gmail.com
Margolis A.A., PhD in Psychology, Acting Rector, Moscow State University of Psychology & Education (MSUPE), Moscow, Russia, margolisaa@mgppu.ru
Yuriev G.A., Programmer, Chair of Applied Computer Informatics, Information Technologies faculty, Moscow State University of Psychology and Education, Moscow, Russia, Moscow, Russia, grinch89@mail.ru
Marmalyuk P.A., PhD in Engineering, Head of the Laboratory of Psychology and Applied Software, Moscow State University of Psychology & Education, Moscow, Russia, ykk.mail@gmail.com
Abstract
The concept of a decision support system designed to optimize the order of tasks during psychological testing and based on trained continuous-time Markov models is presented. Diagnostic conclusions are derived using probabilistic estimates of being in different subject’s classes. These estimates are improved during testing procedure. Selection of a regular task is carried out for each subject individually, with previous testing outcome and forecasting the discriminating fineness of future tasks being in use.

Keywords: Markov models, psychological testing, identification of Markov models, decision support system

Column: Psychological Diagnostics

For Reference

References
  1. Galushkin A.I. Nejronnye seti. Osnovy teorii. M., 2010.
  2. Golovko V. A. Nejronnye seti: obuchenie, organizacija i primenenie: Ucheb. posobie. M., 2001.
  3. Dzhekson P. Vvedenie v jekspertnye sistemy: Ucheb. posobie. M., 2001.
  4. Dzhons M.T. Programmirovanie iskusstvennogo intellekta v prilozhenijah. M., 2004.
  5. Kramer G. Matematicheskie metody statistiki. M., 1976.
  6. Kuravskij L.S., Baranov S.N. Primenenie nejronnyh setej dlja diagnostiki i prognozirovanija ustalostnogo razrushenija tonkostennyh konstrukcij // Nejrokomp'jutery: razrabotka i primenenie. 2001. № 12.
  7. Kuravskij L.S., Baranov S.N. Sintez setej Markova dlja prognozirovanija ustalostnogo razrushenija // Nejrokomp'jutery: razrabotka i primenenie. 2002. № 12.
  8. Kuravskij L.S., Baranov S.N., Kornienko P.A. Obuchaemye mnogofaktornye seti Markova i ih primenenie dlja issledovanija psihologicheskih harakteristik // Nejrokomp'jutery: razrabotka i primenenie. 2005. № 12.
  9. Kuravskij L.S., Baranov S.N., Jur'ev G.A. Sintez i identifikacija skrytyh markovskih modelej dlja diagnostiki ustalostnogo razrushenija // Nejrokomp'jutery: razrabotka i primenenie. 2010. № 12.
  10. Kuravskij L.S., Margolis A.A., Jur'ev G.A. Psihologicheskij trening na osnove nejrosetevoj tehnologii // Nejrokomp'jutery: razrabotka i primenenie. 2009. № 9.
  11. Kuravskij L.S., Jur'ev G.A. Ispol'zovanie markovskih modelej pri obrabotke rezul'tatov testirovanija // Voprosy psihologii. 2011. № 2.
  12. Ljuger Dzh. F. Iskusstvennyj intellekt: strategii I metody reshenija slozhnyh problem. M., 2003.
  13. Ovcharov L.A. Prikladnye zadachi teorii massovogo obsluzhivanija. M., 1969.
  14. Psihodiagnostika v Rossii cherez 5 let // Psihologija. Zhurn. Vysshej shkoly jekonomiki. T. 5. 2008. № 4.
  15. Saati T.L. Jelementy teorii massovogo obsluzhivanija i ejo prilozhenija. M., 2010.
  16. Kuravsky L.S. and Baranov S.N. Condition monitoring of the structures suffered acoustic fatigue failure and forecasting their service life. Proc. Condition Monitoring 2003, Oxford, United Kingdom, July 2003.
  17. Kuravsky L.S. and Baranov S.N. Neural networks in fatigue damage recognition: diagnostics and statistical analysis // Proc. 11th International Congress on Sound and Vibration, St.-Petersburg, July 2004.
  18. Kuravsky L.S. and Baranov S.N. The concept of multifactor Markov networks and its application to forecasting and diagnostics of technical systems // Proc. Condition Monitoring 2005, Cambridge, United Kingdom, July 2005.
  19. Kuravsky L.S., Baranov S.N. and Yuryev G.A. Synthesis and identification of hidden Markov models based on a novel statistical technique in condition monitoring // Proc. 7th International Conference on Condition Monitoring & Machinery Failure Prevention Technologies, Stratford-upon-Avon, England, June 2010.
  20. URL: http:// www.solver.com.
comments powered by Disqus
 
About PsyJournals.ru

© 1997–2019 Portal of Russian Psychological Publications. All rights reserved

PsyJournals.ru in Russian

Publisher: Moscow State University of Psychology and Education

Catalogue of academic journals in psychology & education MSUPE

Creative Commons License

RSS Psyjournals at facebook Psyjournals at Twitter Psyjournals at Youtube Яндекс.Метрика