Портал психологических изданий PsyJournals.ru
Каталог изданий 94Рубрики 51Авторы 8245Ключевые слова 20236 Online-сборники 1 АвторамИздателямRSS RSS

Включен в Web of Science СС (ESCI)

ВАК

РИНЦ

Рейтинг Science Index РИНЦ 2017

17 место — направление «Психология»

0,848 — показатель журнала в рейтинге SCIENCE INDEX

0,750 — двухлетний импакт-фактор

CrossRef

Экспериментальная психология

Издатель: Московский государственный психолого-педагогический университет

ISSN (печатная версия): 2072-7593

ISSN (online): 2311-7036

DOI: http://dx.doi.org/10.17759/exppsy

Лицензия: CC BY-NC 4.0

Издается с 2008 года

Периодичность: 4 номера в год

Доступ к электронным архивам: открытый

 

Восприятие цветных предметов 1299

Измайлов Ч.А., доктор психологических наук, профессор кафедры психофизиологии МГУ им. М.В. Ломоносова, Москва, Россия, ch_izmailov@mail.ru
Павлова М.К., Москва, Россия, dodes_kaden@mail.ru
Ханмагомедова М.А., аспирант кафедры филологии Дагестанского государственного педагогического университета, h-mehriban@mail.ru

Аннотация

В работе исследуется динамика цветового пространства в зависимости от усложнения паттерна стимуляции глаза, начиная от гомогенного светового излучения разного спектрального состава и интенсивности, которые при стимуляции ими сетчатки порождают апертурные цвета, и вплоть до изображения реальных объектов, характеризующихся разным фоном, разной текстурой и формой. Такие стимулы представляют цвет, наиболее близкий к цвету объекта, который мы видим в реальной среде. Построение цветового пространства во всех случаях основывалось на оценках больших надпороговых различий между стимулами и на анализе матрицы попарных различий одним и тем же методом многомерного шкалирования. В результате анализа полученных данных было показано, что цветоразличение более сложных с психофизической точки зрения стимулов (изображения реальных объектов, главной характеристикой которых были меняющиеся текстура и форма), согласно оценкам цветовых различий, представляет собой более простую геометрическую структуру, чем различение«простых» апертурных цветов. Упрощение цветового пространства реальных предметов касается как размерности цветового пространства (оно не увеличивается, а уменьшается), так и его метрики (которая вырождается до уровня порядковой шкалы). В соответствии с этим формулируется положение, что восприятие цвета реальных предметов основано на категориальных принципах, имеющих общие языковые корни с речью. Таким образом, при разработке теории зрительного восприятия одной только психофизической методологии недостаточно для описания восприятия сложных стимулов (которые наиболее приближены к реальным объектам внешней среды), необходимо использовать также и психолингвистическую методологию.

Ссылка для цитирования

Фрагмент статьи
В исследовании цветового восприятия выделяют два типа цветовых образов, которые, в свою очередь, связаны с двумя типами цветовых стимулов. Первый тип стимулов – это гомогенные по пространству и по времени излучения разного спектрального состава и интенсивности стимулы, которые при своем воздействии на сетчатку порождают апертурные цвета (Katz, 1935). Апертурный цвет однозначно характеризуется тремя субъективными переменными, которые рассматриваются как основные цветовые характеристики: цветовой тон, насыщенность и светлота (Wyszecki & Stiles, 1982). В терминах геометрической модели цветового зрения (трехмерного цветового пространства) каждая субъективная переменная вычисляется как психофизическая функция от двух физических переменных: спектрального состава и интенсивности света. Принципиальная схема этой модели была отработана в рамках Международной комиссии по освещению, и ее развитие по разным направлениям цветового восприятия продолжается и в настоящее время (Wyszecki & Stiles, 1982). Второй тип стимулов – это гетерогенные по пространству и времени излучения; при такой стимуляции на соседние участки сетчатки попадает излучение разного спектрального состава и интенсивности, что приводит к качественно другому субъективному феномену, который обозначается как предметный цвет или цвет поверхности объекта (Evans, 1964; Heggelund,1974, 1992). В отличие от строгой математической модели, построенной для описания восприятия апертурных цветов, для восприятия предметных цветов решить аналогичную задачу не удается. Рассмотрим эту проблему более детально.
Апертурный и предметный цвета традиционно различают прежде всего по физической природе стимуляции сетчатки. В первом случае – это излучение некоторого источника света, который попадает в глаз непосредственно от самого источника. Во втором случае стимул воспринимается как свет, отраженный от поверхности, освещенной внешним источникомизлучения, но самой свет не испускающей (Федоров, 1935; Кравков, 1953; Максимов, 1980).Однако исследователи давно обратили внимание, что при восприятии цвета как субъективного феномена физическая природа стимуляции никак не проявляется. Например, цвет лунного диска в ночной темноте апертурный, он воспринимается как цвет самосветящегося объекта, хотя физически в наш глаз попадает световой поток отраженного от поверхности луны солнечного излучения. Противоположным примером (наиболее простым и физически измеряемым случаем) предметного цвета служит восприятие стимула в виде небольшого диска (порядка 1–3 угловых градусов), окруженного немного большим по яркости и значительно большим по угловой величине кольцом. Хотя сам диск и окружающее поле являются источниками излучения, однако субъективно мы видим диск не как самосветящийся, а как кусочек поверхности, освещенный светом извне и окруженный самосветящимся световым полем (Федоров, 1935; Wallaсh, 1963; Рок, 1980). Наличие одновременно двух разных излучений оказывается достаточной характеристикой стимуляции, которая переводит субъективный образ из качества апертурного цвета в предметный цвет. Принципиальное отличие первого примера от второго состоит вовсе не в том, излученный или отраженный свет попадает в глаз, а в том, является ли зрительное поле гомогенным или гетерогенным. Чем более разнообразно по спектральному составу и интенсивности световое поле, тем более «предметным» будет воспринимаемый цвет. Самым распространенным примером предметного цвета служит цвет яблока, лежащего на столе в комнате, освещенной солнечным светом из окна. Такие стимулы характеризуются существенно большей гетерогенностью зрительного поля, вызванной значительными вариациями спектрального состава и интенсивности светового потока, попадающими от разных участков стимульного поля в глаз.
Литература
  1. Гельмгольц Г. О восприятии вообще // Хрестоматия по психологии. Психология ощущений и восприятия / Под ред.: Ю. Б. Гипенрейтер, В. В. Любимова, М. Б. Михалевской.М.: Изд-во МГУ. 1999.
  2. Гибсон Дж. Экологический подход к зрительному восприятию. М.: Изд-во МГУ. 1988.
  3. Грегори Р. Разумный глаз. М.: Изд-во МГУ, 1972.
  4. Измайлов Ч. А. Сферическая модель цветоразличения. М.: Изд-во МГУ, 1980.
  5. Измайлов Ч. А. Многомерное шкалирование ахроматической составляющей цвета // Нормативные и дескриптивные модели принятия решений. Матер. сов.-амер. симп / Под ред. Б. Ф. Ломова и др. М.: Наука, 1981. С. 98–110.
  6. Измайлов Ч. А. Психофизика и психолингвистика: методологические основания теории зрительного восприятия // Материалы 4 съезда РПО. Ростов-на-Дону: Издательство «Кредо». 2007. Т. 2. С. 34.
  7. Измайлов Ч. А. Геометрическая модель различения пигментных цветов // Сенсорные системы. 2010 Т. 24. № 1 (в печати).
  8. Измайлов Ч. А., Соколов Е. Н., Черноризов А. М. Психофизиология цветового зрения. М.: Изд-во МГУ, 1989.
  9. Измайлов Ч. А., Соколов Е. Н., Штиуи С. Сферическая модель цветоразличения в условиях одновременного цветового контраста // Вестник МГУ. 1999. Сер.14.  Психология. №.4. С. 31–36.
  10. Измайлов Ч. А., Черноризов А. М. Язык восприятия и мозг // Журнал ВШП. 2005. Т. 2. № 4. С. 22–52.
  11. Кравков С. В. Глаз и его работа. М.: Изд-во АН СССР. 1953.
  12. Максимов В. В. Трансформация цвета при изменении освещения. М.: Наука. 1984.
  13. Рок И. Введение в зрительное восприятие, М.: Педагогика, 1980.
  14. Соколов Е. Н., Измайлов Ч. А. Цветовое зрение М.: Изд-во МГУ: 1984.
  15. Соколов Е. Н., Измайлов Ч. А. Вызванные потенциалы в рамках сферической модели когнитивных процессов // Нейрокомпьютеры. Разработка и применение. 2006. Т. 4-5. С. 90–105.
  16. Федоров Н. Т. Курс общего цветоведения. М.: ОНТИ, 1935.
  17. Хомский Н. Синтаксические структуры. М.: И. Л., 1962.
  18. Хомский H. Аспекты теории синтаксиса. M.: Изд-во МГУ, 1965.
  19. Шепард Р. Многмерное шкалирование и неметрические представления // Нормативные и дескриптивные модели принятия решений. Матер. сов.-амер. симп. / Под ред. Б. Ф. Ломова и др. М.: Наука, 1981. С. 84–97.
  20. Bimler D. L., Paramei G. V., Izmailov Ch. A. Hue and saturation shifts from spatially induced blackness // J. Opt. Soc. of Amer. 2009. V. 26(1). P. 163–172.
  21. Evans R. M. Variables of perceived color // J. Opt. Soc. of Amer. 1964. V. 54. P. 1467–1474.
  22. Heggelund P. Achromatic color vision. II. Measurement of simultaneous achromatic contrast within a bidimensional system // Vision Research. 1974. V. 14. P. 1079–1088.
  23. Heggelund P. A. Bidimensional theory of achromatic color vision // Vision Research. 1992. V. 32. P. 2107–2119.
  24. Hurvich L. M., Jameson D. A psychological color specification system // J. Opt. Soc. of Amer., 1956.
  25. Izmailov Ch. A. Uniform color space and multidimensional scaling (MDS) // Psychophysical Judgement and the Process of Perception / Eds. I. G. Geissler, P. Pethold. Berlin: VEB Deutscher Verlag der Wiss., 1982. P. 52–62.
  26. Izmailov Ch. A. Spherical model of discrimination of self-luminous and surface colors. In: Geometric representations of perceptual phenomena / Eds. R. D. Luce, M. D. D’Zmura, and A. K. Romney. Mahwah, New Jersey. Lawrence Erlbaum Associates Publishers. 1995. P. 153–168.
  27. Izmailov Ch. A., Sokolov E. N. Spherical model of color and brightness discrimination // Psychol. Science. 1991. V. 2. Р. 249–259.
  28. Izmailov Ch. A., Sokolov E. N. A semantic space of color names // Psychol. Science. 1992. V. 3. Р. 105–111.
  29. Jameson D., Hurvich L. M. Some quantitative aspects of an opponent-color theory. 1. Chromatic responses and spectral saturation // J. Opt. Soc. of Amer. 1955. V. 45. P. 546–552.
  30. Katz D. World of colour. New York.: Trench Trubner & Co., 1935.
  31. Petrov A. P. Surface color and color constancy // Color Res. and Application. 1993. V. 18. № 4. P. 236–240.
  32. Sokolov E. N., Izmailov Ch. A. The conceptual reflex arc: A model of neural processing as developed for color vision // Modern Issues of Perception / Eds. H. G. Geissler et al. Berlin.: VEB Deutscher Verlag der Wissenschaften, 1983. P. 192–216.
  33. Wallach H. The perception of neutral colors // Scient. Americ. 1963. V. 208. P. 107–116.
  34. Wallach H., Galloway A.  The constancy of colored objects in colored illumination. // J. Experim. Psychol. 1946. V. 36. P. 119–126.
  35. Wyszecki G., Stiles, W. S. Color Science: Concepts and Methods, Quantitative Data and Formulas / New York.: John Wiley & Sons, 1982.
 
О проекте PsyJournals.ruЛауреат XIV национального психологического конкурса «Золотая Психея» по итогам 2012 года

© 1997–2019 Портал психологических изданий PsyJournals.ru  Все права защищены

Свидетельство регистрации СМИ Эл № ФС77-66447 от 14 июля 2016 г.

Издатель: ФГБОУ ВО МГППУ

Лауреат XIV национального психологического конкурса «Золотая Психея» по итогам 2012 года

Яндекс.Метрика