Портал психологических изданий PsyJournals.ru
Каталог изданий 96Рубрики 51Авторы 8428Ключевые слова 20536 Online-сборники 1 АвторамRSS RSS

Включен в Web of Science СС (ESCI)

ВАК

РИНЦ

Рейтинг Science Index РИНЦ 2017

17 место — направление «Психология»

0,848 — показатель журнала в рейтинге SCIENCE INDEX

0,750 — двухлетний импакт-фактор

CrossRef

Экспериментальная психология

Издатель: Московский государственный психолого-педагогический университет

ISSN (печатная версия): 2072-7593

ISSN (online): 2311-7036

DOI: http://dx.doi.org/10.17759/exppsy

Лицензия: CC BY-NC 4.0

Издается с 2008 года

Периодичность: 4 номера в год

Доступ к электронным архивам: открытый

 

Сравнительный анализ двух новых концепций адаптивного обучения 175

Куравский Л.С., доктор технических наук, декан факультета информационных технологий, Московский государственный психолого-педагогический университет, Москва, Россия, l.s.kuravsky@gmail.com
Юрьев Г.А., кандидат физико-математических наук, зам. декана, доцент, факультет информационных технологий, ФГБОУ ВО МГППУ, Москва, Россия, g.a.yuryev@gmail.com
Думин П.Н., заведующий лабораторией количественной психологии факультета информационных технологий, ФГБОУ ВО МГППУ
Поминов Д.А., научный сотрудник лаборатории количественной психологии факультета информационных технологий, ФГБОУ ВО Московский государственный психолого-педагогический университет, Москва, Россия, necrofallen@gmail.com

Аннотация

Представлены две новые концепции адаптивного обучения, первая из которых опирается на самообучающиеся структуры, представленные в форме вероятностных моделей, а вторая — на процедуру многомерного статистического анализа, применяемую к результатам дискретных вейвлет-преобразований траекторий выполнения заданий, и матрицы рекомендуемых переходов. Проведен сравнительный анализ различных аспектов их практического применения.

Ссылка для цитирования

Финансирование

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект № 17-29-07034).

Литература
  1. Кибзун А.И., Панарин С.И. Формирование интегрального рейтинга с помощью статистической обработки результатов тестов // Автоматика и телемеханика. 2012. № 6. 119—139.
  2. Кибзун А.И., Вишняков Б.В., Панарин С.И. Оболочка системы дистанционного обучения по математическим курсам // Вестник компьютерных и информационных технологий. 2008. № 10. С. 43—48.
  3. Куравский Л.С., Мармалюк П.А., Юрьев Г.А., Думин П.Н. Численные методы идентификации марковских процессов с дискретными состояниями и непрерывным временем // Математическое моделирование. 2017. Т. 29. № 5. С. 133—146.
  4. Куравский Л.С., Юрьев Г.А., Ушаков Д.В., Юрьева Н.Е., Валуева Е.А., Лаптева Е.М. Диагностика по тестовым траекториям: метод паттернов // Экспериментальная психология. 2018. Т. 11. № 2. С. 77— 94. doi:10.17759/exppsy.2018110206
  5. Осипов Г.С., Брянцев О.А. Модифицированный метод сводных показателей как метод оценки систем дистанционного обучения для морского флота // Эксплуатация морского транспорта. 2007. № 3 (49). С. 48—52.
  6. Сологуб Г. Б.Построение фреймовых семантических моделей в интеллектуальной системе тестирования // Информационные и телекоммуникационные технологии. 2012. № 14. С. 87—93.
  7. Aircraft trajectory clustering techniques using circular statistics. Yellowstone Conference Center, Big Sky, Montana, 2016. IEEE.
  8. Bastani V., Marcenaro L., Regazzoni C. Unsupervised trajectory pattern classification using hierarchical Dirichlet Process Mixture hidden Markov model // 2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP) / IEEE. 2014. P. 1—6.
  9. Borg I., Groenen P.J.F. Modern Multidimensional Scaling Theory and Applications // Springer. 2005. P. 140.
  10. Cramer H. Mathematical Methods of Statistics. Princeton: Princeton University Press. 1999. 575 p.
  11. Eerland W.J., Box S. Trajectory Clustering, Modelling and Selection with the focus on Airspace Protection // AIAA Infotech@ Aerospace. AIAA. 2016. P. 1—14.
  12. Enriquez M. Identifying temporally persistent flows in the terminal airspace via spectral clustering // Tenth USA/Europe Air Traffic Management Research and Development Seminar (ATM2013) / Federal Aviation Administration (FAA) and EUROCONTROL. Chicago, IL, USA: 2013. June 10—13.
  13. Enriquez M., Kurcz C. A Simple and Robust Flow Detection Algorithm Based on Spectral Clustering // International Conference on Research in Air Transportation (ICRAT) / Federal Aviation Administration (FAA) and EUROCONTROL. Berkeley, CA, USA, 2012. May 22—25.
  14. Gaffney S., Smyth P. Joint probabilistic curve clustering and alignment // Advances in Neural Information Processing Systems. Vol. 17. Cambridge, MA: MIT Press, 2005. P. 473—480.
  15. Gaffney S., Smyth P. Trajectory clustering with mixtures of regression models // Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining. 1999. P. 63—72.
  16. Srivastava A., Feron E. Trajectory clustering and an application to airspace monitoring // IEEE Transactions on Intelligent Transportation Systems. 2011. Vol. 12. № 4. P. 1511—1524.
  17. Grevtsov N. Synthesis of control algorithms for aircraft trajectories in time optimal climb and descent // Journal of Computer and Systems Sciences International. 2008. Vol. 47. № 1. P. 129—138.
  18. Hung C., Peng W., Lee W. Clustering and aggregating clues of trajectories for mining trajectory patterns and routes // The VLDB Journal — The International Journal on Very Large Data Bases. 2015. Vol. 24. № 2. P. 169—192.
  19. Krasilshchikov M.N., Evdokimenkov V.N., Bazlev D.A. Individually adapted airborne systems for monitoring the aircraft technical condition and supporting the pilot control actions. M.: MAI Publishing House, 2011. 440 p (in Russian).
  20. Kuravsky L.S., Artemenkov S.L., Yuriev G.A., Grigorenko E.L. New approach to computer-based adaptive testing // Experimental Psychology. 2017. Vol. 10. № 3. P. 33—45. doi:10.17759/exppsy.2017100303
  21. Kuravsky L.S., Margolis A.A., Marmalyuk P.A., Panfilova A.S. , Yuriev G.A. Mathematical aspects of the adaptive simulator concept // Psychological Science and Education. 2016. Vol. 21. № 2. P. 84—95. doi: 10.17759/pse.2016210210  (in Russian).
  22. Kuravsky L.S., Margolis A.A., Marmalyuk P.A., Panfilova A.S., Yuryev G.A., Dumin P.N. A Probabilistic Model of Adaptive Training [Электронный ресурс] // Applied Mathematical Sciences. 2016. Vol. 10. № 48. 2369. URL: http://dx.doi.org/10.12988/ams.2016.65168 (дата обращения 13.04.2019)
  23. Kuravsky L.S., Marmalyuk P.A., Yurev G.A. Diagnostics of professional skills based on probability distributions of oculomotor activity// RFBR Journal. 2016. №. 3 (91). P. 72—82 (Supplement to “Information Bulletin of RFBR” № 24, in Russian).
  24. Kuravsky L.S., Marmalyuk P.A., Yuryev G.A. and Dumin P.N. A Numerical Technique for the Identification of Discrete-State Continuous-Time Markov Models [Электронный ресурс] // Applied Mathematical Sciences. , 2015. Vol. 9. № 8. P. 379—391. URL: http://dx.doi.org/10.12988/ams. 2015.410882. (дата обращения 13.02.2019)
  25. Kuravsky L.S., Marmalyuk P.A., Yuryev G.A., Belyaeva O.B., Prokopieva O.Yu. Mathematical foundations   of flight crew diagnostics based on videooculography data [Электронный ресурс] // Applied Mathematical Sciences. 2016. Vol. 10. № 30. P. 1449—1466. URL: http://dx.doi.org/10.12988/ams.2016.6122 (дата обращения 3.02.2019).
  26. Kuravsky L.S., Marmalyuk P.A., Yuryev G.A., Dumin P.N., Panfilova A.S. Probabilistic modeling of CM operator activity on the base of the Rasch model // Proc. 12th International Conference on Condition Monitoring & Machinery Failure Prevention Technologies. Oxford, UK, June 2015.
  27. Kuravsky L.S., Yuriev G.A. Probabilistic method of filtering artefacts in adaptive testing // Experimental Psychology. 2012. Vol. 5. № 1. P. 119—131 (in Russian).
  28. Kuravsky L.S., Yuryev G.A. Certificate of state registration of the computer program № 2018660358 Intelligent System for Flight Analysis v1.0 (ISFA#1.0). — Application № 2018617617; declared 18 July 2018; registered 22 August 2018. — (ROSPATENT).
  29. Kuravsky L.S., Yuryev G.A. Detecting abnormal activities of operators of complex technical systems and their causes basing on wavelet representations [Электронный ресурс] // International Journal of Civil Engineering and Technology (IJCIET). Vol. 10 (2). P. 724—742. URL: http://www.iaeme.com/IJCIET/ issues.asp?JType=IJCIET&VType=10&IType=2. (дата обращения 19.03.2019)
  30. Kuravsky L.S., Yuriev G.A., Dumin P.N. Estimating the Influence of Human Factor on the Activity of Operators of Complex Technical Systems in Civil Engineering with the Aid of Adaptive Diagnostics [Электронный ресурс] // International Journal of Civil Engineering and Technology. 2019. Vol. 10 (2). P. 1930—1941, http:// www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=10 &IType=02(дата обращения 11.01.2019)
  31. Kuravsky L.S., Yuryev G.A. On the approaches to assessing the skills of operators of complex technical systems // Proc. 15th International Conference on Condition Monitoring & Machinery Failure Prevention Technologies. Nottingham, UK, September 2018. 25 p.
  32. Laxhammar R., Falkman G. Online learning and sequential anomaly detection in trajectories // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2014. Vol. 36. № 6. P. 1158—1173.
  33. Li Z. et al. Incremental clustering for trajectories // Database Systems for Advanced Applications. Lecture Notes in Computer Science. 2010. Vol. 5982. P. 32—46.
  34. Markov models in the diagnostics and prediction problems: Textbook / Edited by L.S. Kuravsky. 2nd Edition, Enlarged. Moscow: MSUPE Edition, 2017. 203 p. (in Russian).
  35. Neal P.G. Multiresolution Analysis for Adaptive Refinement of Multiphase Flow Computations. University of Iowa, 2010. 116 p.
  36. Rasch G. Probabilistic models for some intelligence and attainment tests. // Copenhagen, Danish Institute for Educational Research, expanded edition (1980) with foreword and afterword by B.D. Wright. Chicago: The University of Chicago Press, 1960/1980.
  37. René Vidal, Yi Ma, Shankar Sastry. Generalized Principal Component Analysis [Электронный ресурс]/ New York: Springer-Verlag, 2016. URL: http://www.springer.com/ us/book/9780387878102 (дата обращения 13.04.2019)
  38. Rintoul M., Wilson A. Trajectory analysis via a geometric feature space approach // Statistical Analysis and Data Mining: The ASA Data Science Journal. 2015.
  39. Trevor F. Cox, M.A.A. Cox. Multidimensional Scaling, Second Edition. Chapman & Hall/CRC, 2001. 299 p.
  40. Wilson A., Rintoul M., Valicka C. Exploratory trajectory clustering with distance geometry // International Conference on Augmented Cognition / Springer. 2016. P. 263—274.
  41. Xiangyu Kong, Changhua Hu, Zhansheng Duan. Principal Component Analysis networks and algorithms [Электронный ресурс]. Springer, 2017. URL: http://www.springer.com/us/book/9789811029134 (дата обращения 13.04.2019)
Статьи по теме
 
О проекте PsyJournals.ru

© 2007–2019 Портал психологических изданий PsyJournals.ru  Все права защищены

Свидетельство регистрации СМИ Эл № ФС77-66447 от 14 июля 2016 г.

Издатель: ФГБОУ ВО МГППУ

Creative Commons License

Яндекс.Метрика