Портал психологических изданий PsyJournals.ru
Каталог изданий 96Рубрики 51Авторы 8428Ключевые слова 20536 Online-сборники 1 АвторамRSS RSS

Экспериментальная психология в России: традиции и перспективы

ISBN: 978-5-9270-0196-5

Издатель: Издательство «Институт психологии РАН»

Год издания: 2010

 

Осцилляторы развивающегося организма 694

Греченко Т.Н., доктор психологических наук, ведущий научный сотрудник, Институт психологии РАН, grecht@mail.ru

Аннотация

В работе рассматривается гипотеза о механизме формирования нейронных систем на ранней стадии эмбриогенеза. Предполагается, что основу составляет осцилляторная активность нейронов, которая появляется на ранних стадиях дробления зиготы. Для проверки этого предположения выполнены опыты на эмбрионах травяной лягушки методом регистрации электрической активности отдельных бластомеров. Показано, что уже на первой стадии дифференциации прообразы нейронов генерируют осцилляции, частота которых ранжируется от 3–5 Гц до 35–40 Гц.

Ссылка для цитирования

Фрагмент статьи

Осциллирующая активность нейронов обнаружена в разных отделах ЦНС, а спонтанная периодическая активность является характерной чертой развивающейся нейронной системы (Alle’ne et al., 2008; Furlan et al., 2008). Задолго до того, как органы чувств и движения начнут выполнять свои функции, спонтанная нейронная активность детектируется во многих отделах мозга: например, ганглиозные клетки сетчатки зародыша крысы спонтанно активны в то время, когда сетчатка еще слишком незрелая для того, чтобы передавать зрительную информацию. Во время пренатального периода фоторецепторов слишком мало, а биполярные клетки отсутствуют, биполярные клетки соединяются с фоторецепторами и ганглиозными клетками после рождения. Спонтанная активность развивающихся нейронов, хотя и не несет сенсорной информации, чрезвычайно важна для формирования связей нервной системы. Эксперименты показывают, что нарушение спонтанной электрической активности ганглиозных клеток (например, блокатором натриевых каналов тетродотоксином или электрическими воздействиями соответствующих параметров) изменяет настройку топографической проекции сетчатки и разведение синаптических входов от двух глаз. Эти явления обнаружены как при развитии зрительной системы, так и при ее регенерации у взрослых животных (Sretavan et al., 1988). Большая часть ретинальных ганглиозных клеток во время пренатального развития демонстрирует ритмические паттерны разрядов, причем каждая клетка имеет свой ритм. Когда же две рядом расположенные клетки коррелируют по разрядам, то они имеют общий ритм, рядом расположенные клетки синхронно генерируют электрическую активность и молчат (Maffei, Galli-Resta, 1990).

Литература
  1. Гойда О. А., Шабан В. В., Медина В. В. Электрофизиологические параметры ионной транспортной системы на ранних стадиях развития рыб и амфибий // Физиологический журнал. 1992. Т. 38. № 6. С. 102–105.
  2. Кузень С. И., Санагурский Д. И., Муращик И. Г., Гойда О. А. Изменения трансмембранного потенциала развивающегося эмбриона вьюна при действии инсулина, торможении транскрипции и трансляции // Биофизика. 1980. Т. 25. № 4. С. 658–663.
  3. Alle’ne C., Cattani A., Ackman J. B., Bonifazi P., Aniksztejn L., Ben-Ari Y., Cossart R. Sequential generation of two distinct synapse-driven network patterns in developing neocortex // J. Neurosci. 2008. № 28 (48). P. 12851–12863.
  4. Bozhkova V. P., Palmback L. R., Khariton V. Yu., Chaylakhyan L. M. Organization of the surface and adhesive properties of cleavage furrows in loach (Misgurnus fossilis) eggs // Exp Cell Res. 1983. V. 149. № 1. P. 129–39.
  5. Dumollard R., Carroll J., Dupont G., Sardet Ch. Calcium wave pacemakers in eggs // Journal of Cell Science. 2002. V. 115. P. 3557.
  6. Firth S. I., Wang C. T., Feller M. B. Retinal waves: mechanisms and function in visual system development // Cell Calcium. 2005. V. 37. № 5. P. 425–32.
  7. Furlan F., Taccola G., Grandolfo M., Guasti L., Arcangeli A., Nistri A., Ballerini L. ERG conductance expression modulates the excitability of ventral horn gabaergic interneurons that control rhythmic oscillations in the developing mouse spinal cord // J. Neurosci., 2007. V. 24. P. 919–928.
  8. Maffei L., Galli-Resta L. Correlation in the discharges of neighboring rat retinal ganglion cells during prenatal life // Proc. Natl. Acad. Sci. USA. 1990. V. 87. P. 2861–2864.
  9. Mehta V., Sernagor E. Early neural activity and dendritic growth in turtle retinal ganglion cells // Eur J Neurosci. 2006. V. 24. № 3. P. 773–86.
  10. Muller H. A. Of mice, frogs and flies: generation of membrane asymmetries in early development // Dev Growth Differ. 2001. V. 43 (4). P. 327–342.
  11. O’Donovan M.J. The origin of spontaneous activity in developing networks of the vertebrate nervous system // Curr Opin Neurobiol. 1999. Feb. № 9 (1). Р. 94–104.
  12. Petit-Jacques J., Bloomfield S. A. Synaptic Regulation of the light-dependent oscillatory currents in starburst amacrine cells of the mouse Retina // J Neurophysiol. 2008. V. 100. Р. 993–1006.
  13. Sretavan D.W., Shatz C.J., Stryker M.P. Modification of retinal ganglion cell axon morphology by prenatal infusion of tetrodotoxin // Nature. 1988. Dec. V. 1. № 336 (6198). Р. 468–471.
Статьи по теме
 
О проекте PsyJournals.ru

© 2007–2019 Портал психологических изданий PsyJournals.ru  Все права защищены

Свидетельство регистрации СМИ Эл № ФС77-66447 от 14 июля 2016 г.

Издатель: ФГБОУ ВО МГППУ

Creative Commons License

Яндекс.Метрика