ГЕНЕТИЧЕСКИЕ И ПСИХОЛОГИЧЕСКИЕ МЕХАНИЗМЫ РЕГУЛЯЦИИ ФУНКЦИОНАЛЬНОЙ СИСТЕМЫ «МАТЬ-ПЛОЛ» ¹

ЧИСТЯКОВА Н.В., Институт психологии РАН, Москва

Изучение проблемы регуляции функциональной системы «Мать-Плод» способствует познанию как общих закономерностей репродуктивного системогенеза, так и особенностей поведения женщин при различном течении беременности. Генетические и психологические механизмы регуляции системы «Мать-Плод» представляют собой своеобразные динамические системы, компоненты в которых, кооперируясь, способствуют достижению адаптации на данном этапе онтогенеза с целью сохранения психического здоровья.

Ключевые слова: функциональная система «Мать-Плод», контроль поведения, генотип, кортизол.

Исходя из концепции репродуктивного системогенеза (Васильева, 2006), система «Мать-Плод» представляет собой единую функциональную систему, которая образуется в момент зачатия, иерархически организована и направлена на поддержание оптимальных условий развития плода в женском организме с целью рождения здорового ребенка. Ее формирование связано с запуском и развитием по доминантному принципу сложных и взаимообусловленных адаптационных процессов регуляции, определяющих взаимосвязь между материнским организмом и плодом в пренатальный период (Аршавский, 1993).

Система «Мать-Плод» формируется на базе ресурсной организации субъекта, где индивидуальные ресурсы характеризуют ее адаптационный функциональный потенциал (Маклаков, 2001). Контроль поведения как ресурсная основа функциональной системы «Мать-Плод» обеспечивает интеграцию ее адаптационно-регулятивных механизмов и определяет возможность адекватного использования психических ресурсов для решения жизненно важной задачи на данном этапе онтогенеза — выносить и родить здорового ребенка (Ковалева, Сергиенко, 2007). Следовательно, можно предположить, что индивидуальные различия в уровневом строении контроля поведения в зависимости от согласованного (сбалансированного) характера ресурсной организации субъекта определяют эффективность функционирования системы «Мать-Плод» с целью сохранения психического здоровья.

Сдвиги в условиях среды могут превышать адаптационный функциональный потенциал системы «Мать-Плод» в процессе индивидуального развития и вести к нарушению внутреннего гомеостаза в женском организме и дестабилизации относительно устойчивого и равновесного состояния системы и, как следствие, психической регуляции поведения субъекта на фоне острого нервно-психического напряжения. В ее основе лежит дезинтеграция в процессах регуляции системы вследствие несоответствия актуализируемых индиви-

¹ Работа выполнена при финансовой поддержке РФФИ, проект № 11-06-00015-а.

дуальных ресурсов конкретным требованиям среды, когда система функционирует на пределе ее регуляторных и компенсаторных возможностей.

Беременность является сензитивным периодом онтогенеза, когда генетические и средовые факторы оказывают существенное влияние на психическое состояние женщин. Коактивация генетических и средовых факторов в уровневом строении контроля поведения в период беременности обусловлена логикой интеграции адаптационно-регулятивных механизмов системы «Мать-Плод» и отражается в индивидуальных различиях их внутри- и межсистемной ковариации (Сергиенко, 2012). Психофизиологический уровень выполняет при этом роль звена, опосредующего двусторонние связи между генотипом и индивидуально-психологическими особенностями женщин при различном течении беременности.

Группа кортикостероидных рецепторов занимает важнейшее место в регуляции гипоталамо-гипофизарно-надпочечниковой системы (ГГНС) в период беременности, функциональные эффекты генов которых имеют сложный характер (Chistiakova et al., 2013). В связи с этим можно предположить, что последовательная идентификация генетических предикторов риска развития низкого контроля поведения субъекта, в качестве которых могут выступать гены, кодирующие экспрессию гормонов стресс-индуцированной активации ГГНС, позволит объяснить уровневые различия в его структуре при различном течении беременности.

Методы исследования

Исследование проводилось на базе Центра здоровья матери и ребенка Института педиатрии РАМН (Москва, Россия) среди женщин, находящихся на последнем триместре беременности и проходивших медико-генетическое консультирование. Отбор респондентов осуществлялся с использованием метода определения психологического компонента гестационной доминанты (ПКГД), который позволяет определить отношение женщины к своей беременности и будущему материнству (Добряков, 1996). Полученные данные были сопоставлены с результатами клинико-анамнестического анализа.

Объем выборки составил 96 чел. Средний возраст респондентов в контрольной группе – 24 ± 3 гг., в группе риска – 26 ± 4 гг. Сроки беременности составляли от 25 до 34 (29 ± 3) недель. Группы были уравнены по возрасту, количественному составу и сроку гестации. У всех женщин была диагностирована одноплодная беременность.

В контрольную группу были включены 48 практически здоровые женщины с физиологически нормально протекающей беременностью, находящиеся в состоянии психологического комфорта, имеющие доминирующий или преимущественно оптимальный тип ПКГД (соответственно, 9 и 7-8 баллов). Группу риска составили 48 беременных женщин с отягощенным анамнезом, имеющие деструктивные типы ПКГД: игнорирующий (нет), эйфорический (5 чел.), тревожный (29 чел.), депрессивный (2 чел.) и смешанный (12 чел.).

С целью изучения паттернов межфункциональных связей в регуляции системы «Мать-Плод» была проведена оценка уровневого строения контроля поведения как единой интегративной характеристики (Сергиенко, 2009), которая осуществлялась с помощью опросника «Стиль саморегуляции поведения» (ССПМ) В.И. Моросановой (2004), позволяющего диагностировать показатели когнитивного контроля как индивидуально-

го стиля саморегуляции произвольной активности; русской версии «Шкалы контроля за действием» Ю. Куля (НАКЕМР-90) в адаптации С.А. Шапкина (1997) для определения волевого контроля; русского варианта теста «Эмоциональный интеллект» MSCEIT V.2.0 Дж. Мэйера, П. Сэловея и Д. Карузо (Сергиенко, Ветрова, 2010) с целью изучения эмоциональной регуляции.

Генотипирование индивидуальных ДНК и диагностика содержания гормона стрессиндукции ГГНС кортизола у респондентов проведены сотрудниками лаборатории молекулярно-генетической диагностики Центра здоровья матери и ребенка Института педиатрии PAMH.

В качестве объекта генетического анализа были выбраны гены минералокортикоидного и глюкокортикоидного рецепторов, участвующие в стресс-индуцированной активации ГГНС в период беременности:

- 1) минералокортикоидный рецептор NR3C2 (с.-2 G>C, rs2070951; I180V; rs5522), где гуанин (G) и цитозин (C) – азотистые основания, сцепленные с ДНК и РНК; изолейцин (I) и валин (V) – аминокислоты, участвующие в синтезе белка и характеризующие гибкие генетические связи;
- 2) глюкокортикоидный рецептор (NR3C1-1 [rs10482605] и N363S [rs6195]), где тимин (T) и цитозин (C) – азотистые основания, сцепленные с ДНК и РНК; аспарагин (N) и серин (S) – аминокислоты, участвующие в синтезе белка и характеризующие гибкие генетические связи.

Анализ частот распределения генотипов и аллелей в сравниваемых группах осуществлялся с применением критерия Odds Ratio (OR, 95%CI) на основе таблиц сопряженности 2×2 .

Для оценки корреляции между наличием определенного генотипа и уровнем кортизола в сыворотке крови респондентов применялся непараметрический U-тест Манна-Уитни. Статистически достоверными считали различия при р < 0,01.

Для уточнения полученных данных использовался корреляционно-регрессионный анализ, с помощью которого осуществлялась оценка степени зависимости между изучаемыми параметрами на основе г-коэффициента ранговой корреляции Спирмена и коэффициента детерминации R².

Результаты и их обсуждение

Достоверно значимые различия отмечаются в сравниваемых группах среди беременных женщин, являющихся носителями генотипов rs2070951 и rs5522 минералокортикоидного рецептора NR3C2 и генотипа rs6195 глюкокортикоидного рецептора NR3C1, что может быть обусловлено стресс-индуцированной активацией ГГНС на третьем триместре гестации и провоцировать нарушения в развитии ПКГД (пренатальный риск нарушения психической регуляции: OR = 1,84 для c.-2 G>C NR3C2, OR = 2,36 для V180 NR3C2 и OR = 2,76 для S363 NR3C1, соответственно, табл. 1). Сведения о связи гомозиготного носительства генотипа СС в молекуле рецептора NR3C2 с деструктивным развитием функциональной системы «Мать-Плод» выявлены впервые. Оценка функциональности полиморфного маркера rs10482605 в гене рецептора NR3C1 не показала статически значимых различий в сравниваемых группах.

Таблица 1. Частоты аллелей маркеров гена минералокортикоидного рецептора NR3C2 и маркеров гена глюкокортикоидного рецептора NR3C1-1 и N363S в сравниваемых группах

Ген (маркер)	Генотип/ Аллель	Частота вс	стреч. в ед. (%)		P
тен (маркер)		Группа риска	Контроль- ная группа	OR (95% CI)	двусторонний критерий Фишера
NR3C2	G/G	14 (29)	23 (48)	0,44 (0,25-0,79)**	0,006
	G/C	16 (33)	13 (27)	1,33 (0,73-2,44)	0,35
(c2 G>C; rs2070951)	C/C	18 (38)	12 (25)	1,84 (1-3,37)*	0,048
152070331)	Аллель G	22 (46)	29 (60)	$0,57 \ (0,32-1)^*$	0,047
	Аллель С	26 (54)	19 (40)	1,76 (1-3,09)*	0,047
	I/I (A/A)	15 (31)	24 (50)	$0,45 \ (0,25-0,8)**$	0,006
	I/V (A/G)	25 (52)	20 (42)	1,5 (0,86-2,61)	0,17
NR3C2 (I180V; rs5522)	V/V (G/G)	8 (17)	4(8)	2,36 (0,97-5,74)*	0,05
,	Аллель I (A)	28 (58)	34 (71)	0,56 (0,31-1,01)*	0,05
	Аллель V(G)	20 (42)	14 (29)	1,77 (0,99-3,19)*	0,05
	T/T	22 (46)	28 (58)	0,62 (0,35-1,08)	0,09
	T/C	23 (48)	19 (40)	1,38 (0,79-2,42)	0,25
NR3C1-1 (rs10482605)	C/C	3 (6)	1 (2)	3,128 (0,62-15,89)	1
	Аллель Т	34 (71)	38 (79)	0,65 $(0,34-1,24)$	0,19
	Аллель С	14 (29)	10 (21)	1,54 (0,8-2,93)	0,19
N363S (rs6195)	N/N (A/A)	30 (62)	38 (79)	0,43 (0,23-0,81)**	0,008
	N/S (A/G)	11 (23)	7 (15)	1,69 (0,82-3,48)	0,15
	S/S (G/G)	7 (15)	3 (6)	2,76 (1,03-7,45)**	0,038
	Аллель N (A)	36 (75)	42 (88)	0,4 (0,19-0,87)**	0,018
	Аллель S (G)	12 (25)	6 (12)	2,44 (1,15-5,2)**	0,018

Примечания. OR – odds ratio; 95% CI – 95% доверительный интервал. OR = 1 рассматривали как отсутствие ассоциации, OR > 1 как фактор риска и OR < 1 как защитный фактор.

При указанных генотипах за счет предрасположенности к повышенной чувствительности к кортикостероидам увеличивается риск дисрегуляции функциональной системы «Мать-Плод» на фоне отягощенного анамнеза (табл. 2).

^{*} Значимые по ϕ -критерию различия в сравниваемых группах при p < 0.05.

^{**}Значимые по ϕ -критерию различия в сравниваемых группах при p < 0.01.

Таблица 2. Средние значения концентрации кортизола в крови респондентов в сравниваемых группах в зависимости от носительства генотипов rs2070951, rs5522 и rs6195

		Концентрация ко	U-критерий		
Ген (маркер)	Генотип/ Аллель	Группа риска ГР	Контрольная группа КГ	Манна-Уитни	
NR3C2	G/G	645±48	559±50	54,5**	
(c2 G>C;	G/C	656±52	584±58	30,5**	
rs2070951)	C/C	674±46	587±55	40**	
U-критерий	GG / GC	88,5	82*		
Манна-Уитни	GG / CC	69*	67**		
	GC / CC	119	69,5		
	I/I	646±53	571±62	42,5**	
NR3C2 (I180V; rs5522)	I/V	687±59	593±59	57**	
133322)	V/V	698±45	630±54	3*	
	II / IV	89,5**	168*		
U-критерий Манна-Уитни	II / VV	23,5*	19*		
Widilia Stillin	IV / VV	80	27		
	N/N	660±48	574±57	158,5**	
N363S (rs6195)	N/S	697±50	618±53	6,5**	
	S/S	718±40	652±54	0,5*	
U-критерий	NN / NS	103,5*	74*		
О-критерии Манна-Уитни	NN / SS	28**	18		
	NS / SS	19*	5,5		

Примечания. Концентрация кортизола приведена как среднее значение \pm стандартное отклонение.

Наличие тяжелой соматической патологии в анамнезе респондентов в группе риска является значимым пренатальным фактором риска и может приводить к серьезным сдвигам в регуляции ГГНС и отражаться на уровне психики.

Корреляционно-регрессионный анализ показал, что генотипы СС (rs2070951) и VV (rs5522) MP NR3C2 и генотип SS (rs6195) ГР N363S при высоком содержании гормона стресс-индукции кортизола (Кр) предсказывают с определенной долей вероятности риск развития низкого контроля поведения субъекта в период беременности (табл. 3 и 4). При этом величина вклада, вносимого каждым фактором, в развитие уровневых особенностей регулятивных субшкал в структуре контроля поведения субъекта на данном этапе онтогенеза существенно различается.

^{*} Значимые по U-критерию Манна-Уитни внутригрупповые различия в содержании кортизола в зависимости от носительства генотипа при р < 0.05.

^{**} Значимые по U-критерию Манна-Уитни внутригрупповые различия в содержании кортизола в зависимости от носительства генотипа при р < 0,01.

Таблица 3. Корреляционная матрица связей между регулятивными субшкалами контроля поведения и вариантами генотипов rs2070951, rs5522 и rs6195, а также уровнем гормона стресс-индукции кортизола (Кр) в сравниваемых группах

Параметры			rs2070951	rs5522	rs6195	Кр
Когнитивный контроль	п	ГР	0,117	-0,283	-0,059	-0,328*
	Планирование	КГ	0,253	0,246	0,342*	-0,301*
	П	ГР	-0,082	-0,304*	-0,323*	-0,265
	Программирование	ΚΓ	0,395**	0,368*	0,275	-0,381**
	Гибкость	ГР	-0,364*	-0,356*	-0,372**	-0,388**
	ТИОКОСТЬ	ΚГ	0,445**	0,527**	0,489**	-0,478**
ій к	Моделирование	ГР	-0,088	-0,074	-0,042	-0,109
3HP	моделирование	КГ	0,32*	0,292*	0,354*	-0,355*
Тип	Оценка результата	ГР	-0,092	-0,047	-0,079	-0,147
ГНИ	Оценка результата	КГ	0,248	0,284	0,337*	-0,361*
Ko	Самостоятельность	ГР	-0, 216	-0,31	-0,167	-0,117
		КГ	0,198	0,135	0,256	-0,262
	Общий уровень саморе- гуляции	ГР	0,076	-0,295*	-0,317*	-0,352*
		КГ	0,383**	0,426**	0,477**	-0,447**
ия	Контроль за действием при неудаче	ГР	0,292*	0,172	0,301*	-0,297*
ляц		КΓ	0,42**	0,336*	0,311*	-0,382**
егу.	Контроль за действием при планировании	ГР	0,131	0,242	0,162	-0,257
Волевая регуляция поведения		КГ	0,399**	0,356*	0,527**	-0,424**
пс	Контроль за действием	ГР	-0,092	0,152	-0,293*	0,317*
Bo.	при реализации	КΓ	0,279	0,256	0,267	-0,358*
	T7 1 0	ГР	0,258	0,242	0,293*	-0,321*
ая	Идентификация эмоций	КР	0,396**	0,229	0,341*	-0,4**
ITH	Использование эмоций	ГР	0,276	0,264	0,353*	-0,338*
неі		КР	0,285	0,302*	0,361*	-0,347*
AIIC IB 5	Понимание и анализ	ГР	0,308*	0,227	0,163	-0,354*
эехкомпоне модель ЭИ	эмоций	КР	0,401**	0,209	0,182	-0,411**
рех	Сознательное управление эмоциями	ГР	0,284	0,206	0,152	-0,293*
Четырехкомпонентная модель ЭИ		КР	0,332*	0,175	0,201	-0,348*
		ГР	0,283	0,241	0,252	-0,331*
	Общий балл	КР	0,361*	0,232	0,285	-0,425**
Двух- факторная модель ЭИ		ГР	0,269	0,256	0,325*	-0,334*
	Опытный ЭИ	КР	0,344*	0,268	0,351*	-0,377*
Двух- икторна дель Э		ГР	0,298*	0,219	0,159	-0,327*
фа	Стратегический ЭИ	КР	0,365*	0,194	0,189	-0,383**

Примечания. Статистически достоверными рассматривали эмпирические значения r-критерия Спирмена при p < 0.01.

^{*} Значимые связи при р < 0,05.

^{**} Значимые связи при p < 0.01.

Таблица 4. Множественный регрессионный анализ предикторов уровневых особенностей регулятивных субшкал контроля поведения среди респондентов в сравниваемых группах

Зависимые переменные		Прогностические переменные	\mathbb{R}^2	Δ R ² ,	β	<i>F</i> -критерий
_	П	rs2070951	0,0996	10	+0,8396	5,09*
	Пр	Кр	0,2217	22	-0,0161	13,1**
		rs2070951	0,1418	14	+1,2412	7,06*
	Γ	rs5522	0,2306	23	+2,0439	13,79**
		rs6195	0,0953	10	+1,4738	4,85*
па		Кр	0,2479	25	-0,0216	15,16**
		rs2070951	0,1085	11	+2,5061	5,6*
	ОУ	rs5522	0,0991	10	+3,092	5,06*
		rs6195	0,0822	8	+3,1588	4,12*
Контрольная группа		Кр	0,2377	24	-0,0471	14,34**
ная 1	Terr	rs2070951	0,15	15	+1,1886	8,12**
роль	КН	Кр	0,1988	20	-0,0174	11,41**
Хонт		rs5522	0,114	11	+1,0674	5,9*
X	КП	rs6195	0,1088	11	+1,511	5,62*
		Кр	0,1933	19	-0,0177	11,02**
	Идентификация	rs2070951	0,093	9	+0,0233	4,72*
-	эмоций	Кр	0,2066	21	-0,0004	12*
	Понимание и	rs2070951	0,1678	17	+0,0532	9,28**
	анализ эмоций	Кр	0,2031	20	-0,0006	11,72**
	Общий ЭИ	Кр	0,2424	24	-0,0006	14,73**
	Стратегический ЭИ	Кр	0,2291	23	-0,0005	13,67**
Группа риска	Γ	rs6195	0,3105	31	-2,0723	20,72**
Гру рис	1	Кр	0,2308	23	-0,0274	13,08**

Примечания. Пр – программирование, Г – гибкость, ОУ – общий уровень саморегуляции; КН – контроль за действием при неудаче; КП – контроль за действием при планировании; ЭИ – эмоциональный интеллект; Кр – кортизол.

^{*} Значимые значения по ϕ -критерию при p < 0.05.

^{**} Значимые значения по ϕ -критерию при p < 0.01.

Наблюдаемая разница в величине вклада каждого фактора в уровневом строении контроля поведения субъекта в период беременности обусловлена гетерогенным и гетерохронным развитием составляющих его подсистем (когнитивного контроля, волевой регуляции поведения, эмоционального интеллекта), что подтверждает результаты исследования Г.А. Виленской и Е.А. Сергиенко (2002). В силу гетерархического характера контроля поведения как ресурсной основы системы «Мать-Плод» обеспечивается межуровневая преемственность в ее развитии, которая ведет к дифференциации системы и обусловливает различные способы согласования механизмов ее саморегуляции.

Выводы

- 1. Адаптационно-регулятивные механизмы функциональной системы «Мать-Плод», принадлежащие разным уровням ее самоорганизации и саморегуляции, развиваются и реализуются гетерогенно и гетерохронно. В силу гетерархического характера контроля поведения как ресурсной основы системы обеспечивается межуровневая преемственность в ее развитии, опосредованная генотип-средовым взаимодействием.
- 2. Коактивация генетических и психологических механизмов в их ковариации при функционировании системы «Мать-Плод» определяет относительный порог риска развития низкого контроля поведения с определенной долей вероятности дезадаптации.
- 3. Полученные в настоящем исследовании результаты свидетельствуют о сложности и неоднородности эндогенных механизмов развития контроля поведения как основы саморегуляции на данном этапе онтогенеза.
- 4. Гомозиготные генотипы СС и VV минералокортикоидного рецептора NR3C2 и генотип SS глюкокортикоидного рецептора N363S выступают как факторы риска развития низкого контроля поведения в период беременности, что может провоцировать деструктивное развитие системы «Мать-Плод» при повышенной чувствительности к кортикостероидам.

Литература

Аршавский И.А. Принцип доминанты в индивидуальном развитии организма // Журнал высшей нервной деятельности. 1993. Т. 43. № 4. С. 785–794.

Васильева В.В. Центро-периферическая интеграция в организации функциональных систем женской репродукции: дис. ... докт. биол. наук. Ростов н/Д.: Ростовский научно-исследовательский институт акушерства и педиатрии, 2006.

Виленская Γ .А., Сергиенко E.А., Рязанова T.Б., Дозорцева A.В. Близнецы от рождения до трех лет. М.: Когито-центр, 2002.

Добряков И.В. Типология гестационной доминанты // Ребенок в современном мире: Тезисы докладов 3-й международной конференции. СПб.: ЮНЕСКО, МО России, 1996. С. 21–22.

Ковалева Ю.В., Сергиенко Е.А. Контроль поведения при различном течении беременности // Психологический журнал. 2007. Т. 22. № 1. С. 70–82.

Маклаков А.Г. Личностный адаптационный потенциал: его мобилизация и прогнозирование в экстремальных условиях // Психологический журнал. 2001. № 1. С. 16–24.

Моросанова В.И. Опросник «Стиль саморегуляции поведения» (ССПМ): руководство. М.: Когито-Центр, 2004.

Сергиенко Е.А. Контроль поведения: индивидуальные ресурсы субъектной регуляции [Электронный ресурс] // Психологические исследования: электронный научный журнал. 2009. № 5 (7). URL: http://psystudy.ru.

Сергиенко Е.А. Принципы психологии развития: современный взгляд // Психологические исследования: электронный научный журнал. 2012. № 5 (24). URL: http://psystudy.ru.

Сергиенко Е.А., Ветрова И.И. Тест Дж. Мэйера, П. Сэловея и Д. Карузо «Эмоциональный интеллект» (MSCEIT v.2.0.): руководство. М.: ИП РАН, 2010.

Шапкин С.А. Экспериментальное изучение волевых процессов. М.: Смысл, ИП РАН, 1997.

Chistiakova N. V., Sergienko E.A., Savost'ianov K. V. Common variants of NR3C1 and NR3C2 contribute to pregnancy-related anxiety // Central European Journal of Medicine. 2013. V. 8. № 1. P. 117–124.

GENETIC AND PSYCHOLOGICAL REGULATION MECHANISMS OF THE FUNCTIONAL SYSTEM "MOTHER-FETUS"

CHISTYAKOVA N. V., Institute of Psychology, Russian Academy of Sciences, Moscow

The study of the functional system "Mother-Fetus" regulation contributes to the knowledge of general laws of reproductive sistemogenesis and women's behavioral features at different gestation course. Genetic and psychological regulation mechanisms of the functional system "Mother-Fetus" are the dynamical systems, components of which cooperate and contribute to the adaptation at this stage of ontogeny in order to maintain mental health.

Keywords: functional system "Mother-Fetus", behavior control, genotype, cortisol.

Transliteration of the Russian references

Arshavskij I.A. Princip dominanty v individual'nom razvitii organizma // Zhurnal vysshej nervnoj dejatel'nosti. 1993. T. 43. № 4. S. 785–794.

Vasil'eva V. V. Centro-perifericheskaja integracija v organizacii funkcional'nyh sistem zhenskoj reprodukcii: dis. ... doct. biol. nauk. Rostov n/D.: Rostovskij Nauchno-Issledovatel'skij Institut akusherstva i pediatrii, 2006.

Vilenskaja G.A., Sergienko E.A., Rjazanova T.B., Dozorceva A.V. Bliznecy ot rozhdenija do treh let. M.: Kogito-centr, 2002.

Dobrjakov I.V. Tipologija gestacionnoj dominanty // Rebenok v sovremennom mire: Tezisy dokladov 3-j mezhdunarodnoj konferencii. SPb.: UNESKO, MO Rossii, 1996. S. 21–22.

Kovaleva Ju. V., Sergienko E. A. Kontrol' povedenija pri razlichnom techenii beremennosti // Psihologicheskij zhurnal. 2007. T. 22 . № 1. S. 70–82.

Maklakov A. G. Lichnostnyj adaptacionnyj potencial: ego mobilizacija i prognozirovanie v jekstremal'nyh uslovijah // Psihologicheskij zhurnal. 2001. № 1. S. 16–24.

Morosanova V.I. Oprosnik «Stil' samoreguljacii povedenija» (SSPM): rukovodstvo. M.: Kogito-Centr, 2004. *Sergienko E.A.* Kontrol' povedenija: individual'nye resursy sub'ektnoj reguljacii [Jelektronnyj resurs] // Psihologicheskie issledovanija: jelektronnyj nauchnyj zhurnal. 2009. №5(7). URL: http://psystudy.ru.

Sergienko~E.A. Principy psihologii razvitija: sovremennyj vzgljad // Psihologicheskie issledovanija: elektronnyj nauchnyj zhurnal. 2012. № 5(24). URL: http://psystudy.ru.

Sergienko E.A., Vetrova I.I. Test Dzh. Mjejera, P. Sjeloveja i D. Karuzo «Emocional'nyj intellekt» (MSCEIT v.2.0.): rukovodstvo. M.: IP RAN, 2010.

Shapkin S.A. Eksperimental'noe izuchenie volevyh processov. M.: Smysl, IP RAN, 1997.