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Abstract  
 

Novel algorithms for dynamic monitoring of electrocardiogram waveforms are presented. Their objective is to 

measure drug-induced changes in cardiac rhythm, principally by means of the QT-interval. 
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1. INTRODUCTION 
 

In this paper we present two novel algorithms for dynamic monitoring of electrocardiogram waveforms 

(ECG). The objective of the algorithms is to measure drug-induced changes in cardiac rhythm, princi-

pally by means of the QT-interval – the time between the onset of ventricular depolarisation and the 

end ventricular repolarisation. This is a recognised biomarker which may indicate increased risk of car-

diac arrhythmia, which may arise if the action of a drug prolongs this interval. 

Conventional analysis of the QT interval is performed on individual ECG beat waveforms by 

trained cardiologists, who perform mark-ups of the waveform on screen using digital callipers. Our 

techniques minimise the amount of work needed to be performed by exploiting an existing database of 

mark-ups as a training set for an automated method using hidden Markov models. Once an initial au-

tomated analysis is performed on a continuous recording which may over twenty-four hours consist of 

around 100,000 beats, a small set of less than 30 “template beats” are then generated for a Cardiologist 

to inspect and mark-up. These template mark-ups may then be used to perform a re-annotation of the 

recording. 

The rest of this paper is arranged as follows: 

 In section 2 we give a brief description of the clinical background to the application  

 In section 3 we describe the hidden Markov model implementation of the automated ECG anal-

ysis  

                                                 
1
 This work was presented at the International Conference on Condition Monitoring and Machinery Failure Pre-

vention Technologies in 2009. Published with permission of the British Institute of Non-Destructive Testing.   
© The British Institute of Non-Destructive Testing, 2009. 
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 In section 4 we describe how template beats summarising a whole ECG recording are generated 

and used to provide an additional analysis. 

 

2. CLINICAL BACKGROUND 
 

The electrocardiographic QT interval is an important measurement because when abnormally pro-

longed, it is a warning sign of both cardiac and arrhythmic death 
[1]

. In addition, most regulatory au-

thorities require an assessment of the effect of new drugs upon the QT interval for their approval and 

appropriate labelling 
[2]

. This assessment, known as a Thorough QT Study is performed on a set of 

healthy normal subjects, who are given doses of placebo, the drug under study, and a control drug with 

a known QT prolongation effect. Typically, 10-second ECG recordings are made at specified time-

points after dosage, which can be analysed manually. However, the QT interval itself is highly variable 

from beat to beat (it can vary by as much as 10-15 ms between beats, where a systematic prolongation 

of 15 ms is likely to be of regulatory interest. This motivates the use of continuous ECG recordings us-

ing an ambulatory Holter ECG recording device. This, coupled with an automated measurement sys-

tem, allows the measurement of an enormous number of ECG beats, whose subsequent averaging over 

a time period is likely to give a truer picture than an intermittent 10 second recording. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. QT interval marked up on a standard beat. 

 

Figure 1 shows a standard ECG beat, with yellow markers denoting the QT interval; the three 

turning points following the first yellow marker are known as the QRS complex, and correspond to 

ventricular depolarisation, when blood is pumped out from the ventricles. The smaller peak before the 

second yellow marker is known as the T-wave, and corresponds to ventricular repolarisation, when the 

ventricle relaxes in preparation for the next beat. 

The motivation for measurement of the QT interval is that certain drugs are known to affect the 

cardiac repolarisation cycle and cause a prolongation of the interval. This can increase the risk of a par-

ticular cardiac arrhythmia, known as Torsades de Pointes (TdP), which, though not fatal in itself, can 

easily degenerate into ventricular fibrillation, which is fatal.  The waveform of TdP is shown in       

Figure 2. 
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Figure 2. Torsades de Pointes. 

 

3. AUTOMATED QT ANALYSIS BY HIDDEN MARKOV MODEL 
 

Our algorithm for automated analysis of the ECG waveform and measurement of the QT interval utilis-

es a hidden Markov model 
[3]

 (HMM), based on work by Hughes 
[4]

. The HMM is used to segment up 

the waveform into different regions, corresponding to different states of the model. This is analogous to 

the use of HMMs in speech recognition, where the different states of the model correspond to different 

phonemes 
[3]

. 

One possible configuration of the state transition diagram for an HMM-based ECG analyzer is 

shown in 

 

 
Figure 3. State transition diagram for HMM-based ECG analyzer. 

 

Here, the states are labeled according to the different peaks within the ECG waveform; the P 

wave corresponding to the atrial depolarization, the Q,R, and S peaks corresponding to ventricular de-

polarisation, and the T wave corresponding to ventricular depolarization. The point at the end of the S 

wave (end of the QRS complex) is termed the J-point by cardiologists. The “B” state corresponds to the 

isoelectric baseline that occurs between beats. This hidden Markov model can be used to automate the 

process of placing mark-ups on an ECG wave, by using the Viterbi Algorithm, which is a method based 

on dynamic program whereby the optimal sequence of states in a hidden Markov model can be com-

puted 
[5]

. Once the optimal sequence of states is computed, this can be used to place mark-up points 
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corresponding to the state transitions from one state to the next (the horizontal arrows in the state dia-

gram). In this case, the beginning of the QT interval would correspond to the transition between the PQ 

state and the QR state, and the end of the QT interval would correspond to the transition between the JT 

state and the B state. 

The emission probabilities (probabilities of the individual states at each time point) are comput-

ed from feature vectors derived from the Undecimated Wavelet Transform (UWT) of the signal
[6]

.  

The training of the HMM differs from the traditional approach using the Baum-Welch re-

estimation algorithm 
[3]

 in that in our case, a database of 18,000 ECG waveforms were used which al-

ready had the state transition positions provided as mark-ups by Cardiologists. Hence, the positions of 

the state transitions are known beforehand, and the matrix of transition probabilities can be computed 

by counting the durations within each state. 

The emission probabilities are formed as Gaussian Mixture Models, whose parameters are 

learnt by an Expectation-Maximization algorithm 
[7]

. 

The result of running the Viterbi algorithm on an HMM trained in this manner is shown in   

Figure 4, where the state labels are shown on the X-axis, and the optimal sequence of states is shown in 

light blue. The transition from the state PR to the state QRS is the beginning of the QT interval, and 

from Tw to B2 is the end of the T wave and the end of the QT interval. In this model, the states were 

defined somewhat differently than in the state transition diagram of Figure 3, that: the interval from the 

start of the P-wave to the start of the Q wave is traditionally called the PR-interval by cardiologists, the 

QR and RS states are merged into one state, and the T-wave has been divided into two states Tb (base-

line to start of T-wave) and Tw (T-wave itself). The onset of the T-wave was deduced by heuristic 

methods from the database of ECGs used as an interval before the peak of the T-wave equal to the in-

terval between that peak and the marked end of the T-wave. It does not matter that this is not a precise 

method, because the objective is simply to split it into two states with no particular need to have an ac-

curately determined transition point. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Output from Viterbi algorithm on the trained HMM. 

 

An important advantage of our algorithm over existing automated techniques is that it is a prob-

abilistic technique and can therefore give a principled estimate of the confidence of measurement. Ex-

isting techniques for estimation of the end of the T-wave, for example, rely on heuristic measurements 

of the gradient of the down slope of the T-wave and the baseline. These do not give a probability, and 
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hence will always output an answer even if the waveform is corrupted by noise. By contrast, our algo-

rithm will produce a low value of confidence if the waveform is corrupted, and by application of a con-

fidence threshold, we are able to exclude corrupted beats from the analysis. This is illustrated in      

Figure 5, which shows the results of using the algorithm to analyse a 24 hour continuous ECG record-

ing of a patient on the beta-blocker drug Sotalol, in a study by Sarapa et al 
[8]

. In this recording, 76954 

beats were analysed in total. In the figure, we have plotted the 30-second averages of the QT interval in 

milliseconds as a function of the time after dosage. We have plotted in red the points where the average 

level of confidence over the 30 seconds was below a threshold. As can be seen, the low confidence 

beats tend to have been evaluated as a very short QT interval – in the case of this particular drug be-

cause one of the effects, as well as the lengthening of the QT interval (by around 90 ms in this exam-

ple) is a flattening of the T-wave, which sometimes makes it difficult to locate the end. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 5. 24 hour QT analysis from a patient on Sotalol. 

 

4. SEMI-AUTOMATED QT ANALYSIS BY SUBJECT-SPECIFIC 

TEMPLATES 
 

While the confidence measure produced by the automated QT algorithm is a form of self-validation, it 

is also thought appropriate by the regulatory authorities to have human involvement in the review of 

the results produced.  To this end, the second algorithm presented here utilises results produced by the 

automated algorithm to produce a set of “representative beats” that are then analysed, and if necessary 

re-annotated by a qualified cardiologist.  The resultant mark-ups can then be used to re-apply meas-

urements of the QT interval in a second phase, where the particular preferences for placement of the 

end of the T-wave of the Cardiologist in charge of the study are taken into account. The steps towards 

generating template beats are as follows: 
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- Perform a clustering algorithm, such as k-means on feature vectors extracted from the high-

confidence beats from the automated analysis. 

- For each cluster, form a template beat as an average of the beats that were associated with that 

cluster. 

The key challenge here is to form an appropriate feature vector upon which to base the cluster. 

One of the most prominent effects of drugs on the ECG waveform is not only the change in QT inter-

val, but also the change in the shape (morphology) of the T-wave. One method would be to extract fea-

ture vectors of fixed length from the T-wave and use this as the basis of the clustering in Step i. above. 

However, this neglects the fact that QRS morphology can also change independently from the T-wave 

morphology. In order to overcome this, we have adopted a novel clustering algorithm based around the 

Sammon Map, which is a form of multidimensional scaling that produces a low-dimensional visualisa-

tion that attempts to preserve Euclidean distances in feature space, according to the Sammon “Stress 

Metric”: 
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Where *

ijd  is the distance metric between Beat i and Beat j and ijd is the Euclidean distance be-

tween the two points representing each beat in the visualisation space. 

In order to do this, we need to define a distance measure between two beats; this could be per-

formed by feature extraction, but we have here adopted a method that relates directly to how the tem-

plates are generated; by normalising two beats to the same length using Dynamic Time Warping, anoth-

er technique used commonly in speech recognition
[9]

. This process is illustrated schematically in     

Figure 6.  The procedure, which is based on dynamic programming, involves a non-linear stretching of 

the time axes of two signals (in this case the two beats to be compared), in order to minimise the 

summed square differences between the two signals. Once this has been performed, a root mean square 

distance can be computed for the two signals, which corresponds to a normalised Euclidean distance 

(per time sample). 

Hence we could perform a Sammon projection on a high-confidence subset of the beats in a re-

cording, and then perform the clustering in the visualisation space, in order to select the candidate beats 

for each template. 

However, one significant challenge remains to be overcome to make this method feasible. The 

biggest disadvantage of the Sammon map is that, as can be seen from equation (1), the computational 

complexity of the algorithm scales as the square of N, the number of data points. 
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Figure 6. Schematic illustration of Dynamic Time Warping. 

 

This would render the method infeasible, especially since the distance calculation we need to 

perform for *

ijd  is not a simple Euclidean distance between two vectors, but is instead a Dynamic Time 

Warp operation, which is computationally considerably more expensive. 

So instead, we have introduced a modification of the Sammon algorithm 
[10]

, that greatly reduc-

es the computational load.  This is achieved by noting that the Sammon Stress objective function is 

simply a sum of terms dependent on pairs (i,j) of vectors. In practice, it has been found that one can 

leave out many of the distance pair calculations, and still produce a mapping that is very similar to the 

Sammon Map. Thus we define a sparse subset S of the set of interpoint distances, by choosing, for 

each point, a randomly selected subset of the other points. In practice this can be a small fraction of the 

available data. We term the new metric SASS (Sparse Approximated Sammon Stress), which is formal-

ly defined in terms of the sparse subset S as follows: 
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By choosing, for example 5000 high confidence beats from a recording, and having each beat 

compared randomly with around 100 others, it is possible to pre-compute the distance matrix 
*

ijd  in a 

few minutes on a standard PC. The pre-computed distance matrix is then used as an input to the optimi-

sation algorithm, to produce a 2-Dimensional map that can then be clustered, using k-means clustering.  

For each cluster so formed, we then form a template by again using Dynamic Time Warping, choosing 

the most typical beat (closest to the cluster centre) as the starter beat, and then warping all the other 

beats in the cluster onto that beat.   

The results of this are summarised in Figure 7 for a subject on Placebo in the Sarapa et al So-

talol study 
[8]

.  The left hand plot in the figure shows the visualisation of 5000 beats that were selected 

from the automated analysis. Each blue circle represents a single beat, and the distances between points 

on the graph are optimised to approximate as closely as possible the pairwise distances from the Dy-

namic Time Warping procedure between the corresponding beats. The red dots on the graph are result 

of performing k-Means clustering on the visualisation points, in this case producing 10 cluster centres, 
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giving rise to 10 templates to summarise the recording. The green squares are the 453 beats associated 

with one particular cluster. The resultant template is shown in the right hand plot, with the template it-

self shown in red, and the corresponding family of beats used to generate the template shown in light 

blue. It should be noted that there is an acceptance criterion (based on the Dynamic Time Warp dis-

tance) associated with the procedure, and in this case 339 of the beats have been accepted. The blue 

vertical lines represent an initial estimate of the QT interval mark-ups, which will be subsequently ex-

amined by a cardiologist and if necessary adjusted. 

Figure 7. Template generation via SASS. 
 

Figure 8. Template Generation from SASS - Sotalol dosage. 
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Figure 8 shows the corresponding plot for the same patient when on a dosage of Sotalol, as op-

posed to a placebo. The visualization has the added benefit of showing a marked change in the variabil-

ity of the beat morphology (this can be seen by comparing the scale of the axes in the two figures. The 

effect of the drug has been to produce a much larger and more diffuse cluster of beats, shown above the 

main cluster, which is densely packed.  One of the templates is shown in the right hand plot, showing a 

marked difference in the T-wave morphology as a result of the drug effect. 

Following the generation of templates and adjustment of markups by a Cardiologist, a recording 

can be re-analysed using the Cardiologist markups of the templates as a basis. This is performed by a 

reverse Dynamic Time Warp process, where the template is warped back onto the beat and the mapped 

positions of the beginning and end of the QT interval are computed. This is termed the “refined” analy-

sis – as the measurement of each beat is based on a subject-specific set of mark-ups from a single Car-

diologist, as opposed to a subject-generic analysis based on mark-ups from many Cardiologists, which 

was the basis of the training data. 

Typical results from this are seen in Figure 9, for a patient on Placebo.  It is noticeable from this 

that the scatter of points from beat to beat for the QT interval is lower for the refined analysis than it is 

for the automated analysis; more detail can be seen, and in one case, it has been possible to restore 

some low confidence beats that were omitted from the initial automated analysis. 

 

Figure 9. Refined data analysis compared with automated algorithm. 
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