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Abstract 
 

Pattern recognition has been used and developed as a process of advanced analysis of acoustic signal. De-

signing a robust pattern recognition system involves three fundamental tasks: signal pre-processing, feature 

extraction and selection, and finally classifier design and optimization. This paper reports on an application 

to detect and monitor conditions of a large, water-filled siphon used in underground tunnels. Acoustic signals 

were collected from 4 hydrophones under various typical siphon conditions and used as input data to study 

the variation of the acoustic field. The discrete wavelet transform (DWT) was used in feature extraction and 

K-nearest neighbors (KNN) classification was applied. Subsequently, the system was tested on new un-

known data and compared with supervised training samples. The results demonstrated that the acoustic sen-

sors have high reproducibility for collecting signals under operational conditions. The pattern recognition 

system is also capable of discriminating different pipe conditions but further refinement is needed to improve 

sensitivity and to compensate for the effect of variable water level and sensor misalignment.  
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1. INTRODUCTION  
 

Acoustics is used widely to determine the conditions of hidden assets, which include pipes, pump-

ing stations and tunnels. It is popular because sound waves provide a rapid, effective and non-

invasive means for asset quality control. Historically, Fourier transform-based spectral analysis 

methods have been used to analyse the collected acoustic data. These are based on time series data 

processing and calculating global energy-frequency distributions and power spectra. However, the 

use of Fourier spectral analysis is always limited to linear and stationary systems. In order to over-

come these issues, methods of time-frequency analysis, including short-time Fourier transform 

(STFT), Wigner-Ville Distribution (WVD)
[3]

 and Wavelet Transform (WT)
[2]

, have been recently 

introduced.  

In this analysis it is important to be able to determine patterns which are associated with par-

ticular system states. For many industrial applications, identifying and classifying patterns and ex-

tracting features using time-series data constitute an important topic for research. In this research a 

subset of patterns which represents a range of typical conditions is of a particular interest. Feature 

extraction and pattern recognition algorithms have been developed and used for analysing signals 

and for signal classification
[8]

 These techniques include hidden Markov models (HMM), K-nearest 
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neighbours (KNN)
[5]

, decision trees, and neural networks methods
[4]

. Although these techniques 

found applications in areas related to voice and speech recognition, image analysis and security, 

they have not been used extensively for the condition monitoring of civil engineering assets. There-

fore, this project concentrates on developing a new methodology for the analysis of acoustic data 

collected in a hydraulic siphon. The aim of this project is to develop a robust classification tech-

nique to discover a relationship between the acoustic data and a range of classified patterns obtained 

for a full-scale model of a hydraulic siphon used in London Underground.  

 

2. EXPERIMENTS SET UP AND DATA COLLECTION 
 

Acoustic data were collected in a siphon which was constructed from 450mm diameter concrete 

pipes in the Hydraulics Laboratory in the University of Bradford. The siphon was 4.2 m long and 

2.0 m high. It was installed on a 500 mm layer of fine sand in an open top box made of 12mm ply-

wood. The siphon was instrumented with four 25 mm hydrophones, 3 of which were installed in the 

left leg of the siphon. The other hydrophone was installed in the right leg of the siphon 75 mm 

above the speaker and used as a reference receiver. The source was a 50 mm diameter water re-

sistant speaker in a PVC enclosure which is able to operate underwater. The hydrophones and the 

speaker were attached securely to two aluminum tubes which were lowered into the opposite legs of 

the siphon and kept at the same positions in all of the experiments conducted in the siphon. Figure 1 

illustrates the equipment used in this experiment. The siphon was filled with clean water to the level 

of 900 mm below the top of the right vertical pipe (reference water level) in all the experiments ex-

cept water level test. 

The data acquisition and signal processing facilities used in these experiments consisted of: 

(i) a computer with WinMLS software to control the sound card which generated a sinusoidal 

sweep in the frequency range of 100 - 6000 Hz; (ii) an 8-channel high-pass hydrophone filter used 

to remove unwanted low-frequency noise produced by equipment and machinery operated in the 

laboratory from the signals received on hydrophone H1-H3; (iii) a measuring amplifier and a filter 

which were used to condition and filter the signal received on the reference hydrophone in the 100 – 

4000 Hz range. In addition, a power amplifier was used to drive the underwater speaker. Stereo am-

plifier and headphones were used to control subjectively the quality of the signal produced by the 

underwater speaker. 

 

Figure 1. Structure of siphon and sensors 
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3. SIGNAL PROCESSING METHODOLOGY 
 

For most industrial applications, a classical pattern recognition system consists of the following 

components: pre-processing, feature extraction, feature selection and pattern classification (decision 

making). Feature extraction and recognition methods are very important factors to achieve robust 

system performance. In this work we used the wavelet decomposition and K-nearest neighbors 

method to analyze the collected acoustic data and classify patterns. 
 

3.1. Wavelet Decomposition 
 

The wavelet transform (WT) is an important part of pre-processing and feature extraction phases in 

a pattern recognition system. It has been designed to analyze the temporal and spectral properties of 

non-stationary signals and overcomes the shortcomings of Fourier transform by applying adjustable 

window to achieve the required frequency and temporal resolution. Applications of 1-D discrete 

wavelet transform are numerous in acoustical signal processing
[1]

. A discrete wavelet transform 

(DWT) decomposes a signal into mutually orthogonal set of wavelets. The signal to be analyzed is 

passed through filters constructed by a mother wavelet with different cut-off frequencies and at dif-

ferent scales. A discrete wavelet transform of a discrete time signal f(t) with length N and finite en-

ergy can be written as: 
 

                                                        ∑     
 

√ 
   
      

   

 
  ,    (1) 

 

where 
 

√ 
  

   

 
  defines the family of wavelet function, with     the scale of the transform and b 

the spatial (temporal) location, * denotes the complex conjugate.   

The process of discrete wavelet transform implemented at each stage can be simplified as 

low-pass filtering of the signal for the approximations and high-pass filtering of the signal for the 

details, and then down sampling by half. Filtering a signal corresponds to the convolution of the 

signal with the impulse response of the filter. The output coefficients can be then expressed mathe-

matically as: 

                                                       ∑              
        (2a) 

 

                                                      ∑              
       ,    (2b) 

 

where      is the original signal,          and         are the outputs of the high-pass filter   and 

low-pass filter  , respectively, after down sampling by half.  

For many signals, it is the low-frequency components which are mostly important. These 

components define the signal its identity. The wavelet decomposition process can be iterated, with 

successive approximations being decomposed in turn, so that one signal is broken down into many 

lower-resolution components. It is called the wavelet decomposition tree
[7]

 as presented in Figure 2. 

Figure 2. Wavelet decomposition tree. 
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The coefficients vectors    and    can be then used to reconstruct real filtered signals by 

reversing the decomposition process. The process yields reconstructed approximations   , and de-

tails    which are true constituents of the original signal, so the original signal can be obtained by 

combining details and approximations        .  

 

3.2. K-nearest neighbors (KNN) method 
 

K-nearest neighbors is a common classification technique based on the use of distance measures. 

For a given unlabeled sample  , find the   “closest” labeled samples in the training data set and as-

sign   to the class that appears most frequently within the  -subset.   is the number of considered 

neighbors. Usually Euclidean distance is used and it is expressed as: 
 

                                                             √∑ |     | 
 
       (3) 

 

where   is the training data set:         A typical procedure for the KNN classification process is: 
 

1) Calculate Euclidean distances of all training data to testing data.  

2) Construct a new matrix which elements are Euclidean distances between testing data and corre-

sponding training data.  

3) Pick K number of samples closest to the testing data by choosing   smallest values of Euclidean 

distance. Larger value of K yields smoother decision regions and, therefore, results in a better 

classification. However, this increases computational burden as further samples are taken into 

account.  

4) Classification: majority vote. K preferably odd to avoid ties.  

 

4. EXPERIMENTAL CONDITIONS 

 

The acoustic signals recorded in the siphon at two different conditions were decomposed by apply-

ing discrete wavelet transform. These conditions were: (i) clean siphon; (ii) siphon with a controlled 

amount of blockage. The blockage was simulated with bags of sand. Each of this bags contained 

approximately 1 kg of fine sand. A maximum of 10 bags were used in these experiments. 

Signals with the frequency components higher than 5512Hz were filtered out and low-pass 

signals were decomposed into 8 frequency bands with each bandwidth equals to 
  

  ,   =22050Hz is 

the sampling frequency,   is the depth of the decomposition. 

The frequency bands on the 5
th

 depth were calculated as follows: 
 

                                                              
 

     
   

          (4) 
 

Therefore, the frequency bands obtained with this method were:  
 

(1) 0 – 689 Hz; 

(2) 689—1378 Hz;  

(3) 1378—2067 Hz;  

(4) 2067—2756 Hz;  

(5) 2756--3445 Hz;  

(6) 3445—4134 Hz;  

(7) 4134—4823 Hz;  

(8) 4823—5512 Hz. 
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This process can be illustrated with a decomposition tree shown in Figure 3. 

Note: 8 frequency bands are presented as their index numbers in brackets as displayed above in the 

following contents. 

 

Figure 3. Modified wavelet decomposition tree generated by MATLAB 

 

4.1. Reproducibility test 
 

Figure 4 is an example of the acoustic signal from two blockages in the siphon decomposed into 8 

filtered signals by using discrete wavelet transform. This process was repeated on at least 3 signals 

which were collected under the same siphon condition but at different times so that the reproduci-

bility of this experiment could be determined. 
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Figure 4. Acoustic impulse response of the siphon with 2 blockages decomposed using sym4 

(Singh & Tiwari, 2006) as mother wavelet. From top to bottom: the original signal plus 8 

wavelet outputs with a progressive increase in the frequency band. 
 

Energy and cross-correlation coefficients were calculated to describe the similarity between signals 

at same frequency range. The energy contained in each signal was calculated according to  
 

                                                                   
∫        
 
 

  
     (5) 

As the energy of the sound generated by the speaker had varied slightly between individual meas-

urements, the energy percentage in each frequency band was calculated to enable a comparison be-

tween these signals 

                                  
                                           

                          
        (6) 

The cross-correlation coefficients were also calculated as 

                                                                 
      

√            
,    (7) 

where C(x, y) is the covariance of the vector x and y 

                                                                           (8) 

In the above expression E(x) is the expected value of x 

                                                              ∫        
  

  
,     (9) 

where f(x) is the probability function. The maximum deviation (MD) =    |    ̅|   where    

represents all samples and  ̅ is the mean of them. Maximum deviation sensitivity C (%) is calculat-

ed as a measure of system reliability, the lower value of C indicates more stability of the system 
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Table 1 presents the result for acoustic energy obtained from the reproducibility test for the siphon 

blocked with two sand bags. The number in brackets in the top row corresponds to the WT band 

defined in the above paragraph. This table also presents the maximum deviation sensitivity C (%) 

which corresponds to the similarity between the data obtained in reproducibility experiments. 

Table 1. Acoustic energy percentage of 2 blockages in the siphon at 8 frequency bands and 

maximum deviation sensitivity. 

Energy (%) (1) (2) (3) (4) (5) (6) (7) (8) 

Test 1 18.61 11.97 2.18 1.20 0.49 1.33 1.55 1.15 

Test 2 20.14 11.76 2.30 1.21 0.47 1.35 1.58 1.13 

Test 3 20.83 11.29 2.17 1.09 0.50 1.37 1.56 1.10 

C(%) 6.29 3.28 3.76 6.57 3.42 1.48 1.07 2.37 

 

Table 2 presents the cross-correlation coefficient obtained in three experiments repeated in the si-

phon with the same amount of sediment. This table together with the acoustic energy data presented 

in Table 1 illustrates a very high similarity between the three repeated tests and reproducibility in 

the experiment.  

Table 2. Cross-Correlation coefficients of reproducibility tests of 2 blockages in the siphon 

Cross-correlation coefficients (1) (2) (3) (4) (5) (6) (7) (8) 

Test 1 VS Test 2 0.9989 0.9995 0.9992 0.9983 0.9961 0.9988 0.9991 0.9992 

Test 1 VS Test 3 0.9993 0.9996 0.9989 0.9991 0.9997 0.9990 0.9993 0.9969 

Test 2 VS Test 3 0.9985 0.9991 0.9976 0.9988 0.9979 0.9991 0.9994 0.9980 

.  

4.2. Condition classification 
 

The values of acoustic energy and correlation coefficients calculated for 8 WT bands were used as 

features to construct a training data matrix. The same process was repeated on the acoustic signals 

collected from unknown pipe condition and testing data matrix was constructed in the same way 

(see Table 3 and 4). Both matrices were used with K-nearest neighbors algorithm to determine the 

condition of the siphon from new testing data. The value of K was chosen 1 so that only the nearest 

neighbor from the training data could be found. Examples of blockage condition matrices are shown 

in Table 3. 

 

Table 3. Training data matrix of energy percentage of blockage conditions 
 

Energy (%) (1) (2) (3) (4) (5) (6) (7) (8) 

Class1 (clean) 1.2463 7.5603 1.0493 0.5024 0.0368 0.7646 0.0575 1.1635 

Class2 (1bag) 0.1836 0.7319 0.3943 0.0366 0.0351 0.0364 0.3502 0.1288 

Class3 (2bags) 0.0283 0.0929 0.0496 0.0066 0.0079 0.0131 0.1304 0.0071 

Class4 (3bags) 0.0235 0.0410 0.0098 0.0040 0.0150 0.0174 0.0194 0.0048 

Class5 (4bags) 0.0300 0.0286 0.0037 0.0043 0.0017 0.0015 0.0575 0.0020 

Class6 (5bags) 0.0094 0.0265 0.0118 0.0023 0.0030 0.0036 0.0257 0.0029 

Class7 (6bags) 0.0054 0.0313 0.0015 0.0027 0.0021 0.0035 0.0115 0.0023 

Class8 (7bags) 0.0064 0.0392 0.0115 0.0041 0.0185 0.0059 0.0357 0.0057 

Class9 (8bags) 0.0033 0.0010 0.0009 0.0003 0.0011 0.0029 0.0014 0.0008 

Class10 (9bags) 0.0015 0.0007 0.0002 0.0001 0.0032 0.0006 0.0009 0.0005 

Class11 (10bags) 0.0017 0.0006 0.0017 0.0003 0.0018 0.0012 0.0051 0.0016 
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Table 4 presents the testing data matrix composed of the values of acoustic energy deter-

mined for 8 WT bands. These data correspond to some new conditions against which the proposed 

method is to be tested. Each element in the testing data matrix is to be compared with the elements 

in the corresponding column in the training data matrix. In this way the training data closest to the 

testing data can be found. In this process a new matrix is constructed as shown in Table 5. This ma-

trix lists all Euclidean distance values that will indicate which training data were the closest to test-

ing data by finding the smallest value of Euclidean distance. 
 

Table 4. Testing data matrix of energy percentage of blockage conditions 

Energy (%) (1) (2) (3) (4) (5) (6) (7) (8) 

Test data1     1.4616 18.0752 0.4818 0.2592 0.0705 0.1739 1.1908 0.1488 

Test data2   0.1999 2.2211 0.0540 0.1568 0.1112 0.0036 0.0964 0.0136 

Test data3   0.0955 0.1376 0.0119 0.0046 0.0015 0.0038 0.0168 0.0070 

Test data4   0.0057 0.0042 0.0036 0.0021 0.0028 0.0016 0.0144 0.0044 

 

Table 5. Euclidean distance matrix of energy percentage of blockage conditions 

Euclidean distances (1) (2) (3) (4) (5) (6) (7) (8) 

Class1 (clean) 0.2152 10.5149 0.5675 0.2432 0.0337 0.0804 0.0273 0.0403 

Class2 (1bag) 1.2779 17.3433 0.0876 0.2226 0.0355 0.1015 0.8406 0.0200 

Class3 (2bags) 1.4333 17.9824 0.4322 0.2525 0.0626 0.1247 1.0604 0.1416 

Class4 (3bags) 1.4381 18.0342 0.4720 0.2552 0.0555 0.1205 1.1714 0.1439 

Class5 (4bags) 1.4316 18.0466 0.4781 0.2548 0.0688 0.1364 1.1333 0.1467 

Class6 (5bags) 1.4521 18.0487 0.4701 0.2569 0.0675 0.1343 1.1651 0.1459 

Class7 (6bags) 1.4561 18.0439 0.4803 0.2565 0.0684 0.1344 1.1793 0.1465 

Class8 (7bags) 1.4551 18.0360 0.4703 0.2551 0.0520 0.1320 1.1551 0.1430 

Class9 (8bags) 1.4583 18.0742 0.4809 0.2588 0.0694 0.1349 1.1894 0.1480 

Class10 (9bags) 1.4600 18.0745 0.4816 0.2590 0.0674 0.1373 1.1899 0.1482 

Class11 (10bags) 1.4599 18.0747 0.4801 0.2588 0.0688 0.1367 1.1857 0.1471 

 

Table 6. Index of nearest neighbor’s class from training data matrix to testing data matrix 
 

Index No. (1) (2) (3) (4) (5) (6) (7) (8) 

Test data1 1 1 2 2 1 1 1 2 

Test data2 2 2 2 2 3 6 3 3 

Test data3  5 3 6 5 5 6 4 3 

Test data4 7 9 5 6 6 5 7 4 

 

Majority voting was then applied to discover the most common class in the index matrix. In 

the index matrix Table 6, number 1 appeared 5 times as the most common number of test data 1, 

number 2 and 5 of test data 2 and test data 3. No obvious majority of any class was found for test 

data 4 with number 5, 6 and 7 appeared equal times. These results suggest that test data 1, 2 and 3 

belong to class 1, 2 and 5, respectively. It is difficult to draw a clear conclusion on test data 4, but it 

is possible to suggest that its condition was close to any of classes 5, 6 and 7.  
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Figures of energy percentage against frequency bands of both testing data and training data 

support the results derived from K-nearest neighbors classification. Figure 5(a) shows the energy 

percentage against frequency bands of testing data 1 and 6 of training data sets, testing data 1 can be 

seen as closest to the training data of clean siphon condition which is class 1. It is the result similar 

to that obtained via the KNN classification method (see Table 6). Figure 5(b), (c) and (d) are testing 

data 2, 3 and 4 plotted in the same way with same training data sets as in Figure 5(a). All 4 figures 

illustrate the results consistent with those obtained via the KNN classification method.  
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Figure 5 (a-d). Energy percentage against frequency plots of testing and training data 

 

5. CONCLUSIONS 
 

Discrete wavelet transform was used as a main signal processing method in reproducibility test, fea-

ture extraction and condition classification. Acoustic signals were decomposed into different fre-

quency ranges up to 5512 Hz. The energy percentage and cross-correlation coefficients between 

individual data sets in each frequency band were calculated as characteristic features to describe the 

degree of similarity between these signals. The reproducibility analysis suggests that the data are 

reproducible if the condition does not change.  

K-nearest neighbor algorithm was used as classification method to recognize the condition 

of the siphon. For this purpose the siphon was blocked with a controlled amount of sand. The re-

sults suggest that the acoustic technique and the adopted classification system are capable of dis-

criminating different pipe conditions, but further refinements are needed to tune its sensitivity and 

improve its accuracy. Meanwhile, it also can be seen that the low frequency components of the sig-

nal appear to show more accurate results than their high frequency counterparts. Therefore, choos-

ing frequency bands carefully helps to achieve better performance of the adopted classification 

method and it deserves a further investigation. 
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