Портал психологических изданий PsyJournals.ru
Каталог изданий 94Рубрики 51Авторы 8279Ключевые слова 20372 Online-сборники 1 АвторамRSS RSS

РИНЦ

0,214 — двухлетний импакт-фактор

Моделирование и анализ данных

Издатель: Московский государственный психолого-педагогический университет

ISSN (печатная версия): 2219-3758

ISSN (online): 2311-9454

DOI: http://dx.doi.org/10.17759/mda

Лицензия: CC BY-NC 4.0

Издается с 2011 года

Периодичность: 4 номера в год

Язык журнала: русский

Доступ к электронным архивам: открытый

 

Синтез и идентификация скрытых марковских моделей с дискретным и непрерывным временем *

Куравский Л.С., доктор технических наук, декан факультета информационных технологий, Московский государственный психолого-педагогический университет, Москва, Россия, l.s.kuravsky@gmail.com
Баранов С.Н., доктор физико-математических наук, генеральный директор компании ООО «Русское авиационное общество», Москва, Россия, rusavia@rusavia.com
Юрьев Г.А., кандидат физико-математических наук, зам. декана, доцент, факультет информационных технологий, ФГБОУ ВО МГППУ, Москва, Россия, g.a.yuryev@gmail.com

Аннотация

Рассматриваются новые методы синтеза и идентификации скрытых марковских моделей, предназначенных для диагностики систем с дискретным и непрерывным временем. Модель первого приближения формируется с помощью многомерного статистического анализа наблюдаемых данных или их обработки посредством самоорганизующихся карт Кохонена. Затем эта структура подвергается коррекции по определённым правилам. Для обучения полученных моделей используются гистограммы наблюдаемых частот пребывания в различных состояниях системы после заданных периодов эксплуатации. Cвободные параметры моделей идентифицируются методом минимума хи-квадрат. Синтез выполняется при наличии неопределённостей, включая отсутствие полной информации о состояниях системы и связях между ними. Неидентифицированные наблюдения частично определяются методом распространения классификации с помощью самоорганизующихся карт Кохонена или кластерного анализа. Связи между различными состояниями определяются в соответствии со смежностью или их кластеров, или приписанных состояниям областей выигрывающих элементов топологических карт Кохонена, опираясь на статистические критерии согласия. С целью повышения надёжности, для моделей с дискретным временем (цепей Маркова) выполняется переход к обучаемым структурам с непрерывным временем (сетям Маркова), с последующим возвратом в дискретный масштаб времени и идентификацией вероятностей переходов между состояниями. Представленные методы полезны для специалистов, отвечающих за эксплуатацию и обслуживание технических систем. Полученные результаты применяются для выявления повреждений и прогнозирования сроков службы конструкций, а также для планирования регламентных работ. В качестве иллюстрации решаются задачи синтеза и идентификации марковских моделей, представляющих усталостное разрушение панели воздухозаборника летательного аппарата.

Ключевые слова: скрытые марковские модели, самоорганизующиеся карты признаков Кохонена, цепи Маркова, сети Маркова

Рубрика: Математическое моделирование

Тип: научная статья

* Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект № 10-06-00423а).

Ссылка для цитирования

Литература
  1. Baranov S.N. and Kuravsky L.S. Acoustic vibrations: modeling, optimization and diagnostics. - 2nd Edition, enlarged, Moscow: RUSAVIA, 224 pp., 2006.
  2. Baum L.E., Petrie T., Soules G., and Weiss N. A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. - Ann. Math. Statist., vol. 41, No. 1, pp. 164–171, 1970.
  3. Bendat J.S. and Piersol A.G. Random data. Analysis and measurement procedures. - New York: John Wiley & Sons, 1986.
  4. Bishop Y.M.M., Fienberg S.E., and Holland P.W. Discrete multivariate analysis: Theory and practice. -  Cambridge, MA: M. I. T. Press, 1975.
  5. Bogdanoff J.L. and Kozin F. Probabilistic Models of Cumulative Damage. - New York: John Wiley & Sons, 1985.
  6. Brousset C. and Baudrillard G. Neural network for automating diagnosis in aircraft inspection. - Review of Progress in Quantitative Nondestructive Evaluation (Ed. by D.O. Thompson and D.E. Chimenti), Plenum Press, New York, vol. 12, pp.797-802, 1993.
  7. Cramer H. Mathematical methods of statistics. - Princeton: Princeton University Press, 1946.
  8. Kohonen T. Self-organizing maps. - Heidelberg: Springer Verlag, 1995.
  9. Куравский Л. С., Баранов С. Н. Применение нейронных сетей для диагностики и прогнозирования усталостного разрушения тонкостенных конструкций. – Нейрокомпьютеры: разработка и применение, 2001, №12, с. 47-63.
  10. Kuravsky L.S. and Baranov S.N. Condition monitoring of the structures suffered acoustic fatigue failure and forecasting their service life. - Proc. Condition Monitoring 2003, Oxford, United Kingdom, pp. 256-279, July 2003.
  11. Куравский Л. С., Баранов С. Н. Дискриминантные сети в задачах диагностики. - Нейрокомпьютеры: разработка и применение, 2003, №8-9, с. 3-9.
  12. Kuravsky L.S. and Baranov S.N. Neural networks in fatigue damage recognition: diagnostics and statistical analysis. - Proc. 11th International Congress on Sound and Vibration, St.-Petersburg, Russia, pp. 2929-2944, July 2004.
  13. Kuravsky L.S. and Baranov S.N. Synthesis of Markov networks for forecasting fatigue failures. - Proc. Condition Monitoring 2003, Oxford, United Kingdom, pp. 76-91, July 2003.
  14. Kuravsky L.S. and Baranov S.N. The concept of multifactor Markov networks and its application to forecasting and diagnostics of technical systems. - Proc. Condition Monitoring 2005, Cambridge, United Kingdom, pp. 111-117, July 2005.
  15. Куравский Л.С., Баранов С. Н., Малых С. Б. Нейронные сети в задачах прогнозирования, диагностики и анализа данных: Учеб. пособие. – М.: РУСАВИА, 2003. – 100 с.
  16. Лоули Д., Максвелл А. Факторный анализ как статистический метод. – М.: Мир, 1967. – 144 с.
  17. Marple S.L., Jr. Digital spectral analysis with applications. - New Jersey: Prentice-Hall, 1987.
  18. Pidaparti R.M.V. and Palakal M.J. Neural network approach to fatigue-crack-growth predictions under aircraft spectrum loadings. - Journal of Aircraft, vol. 32, pp.825-831, 1995.
  19. Rabiner L.R. A tutorial on hidden Markov models and selected applications in speech recognition. - Proc. IEEE, vol.77, No.2, pp.257–286, 1989.
  20. Viterbi A.J. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. - IEEE Transactions on Information Theory, vol.13, No.2, pp.260-269, 1967.
Статьи по теме
 
О проекте PsyJournals.ru

© 1997–2019 Портал психологических изданий PsyJournals.ru  Все права защищены

Свидетельство регистрации СМИ Эл № ФС77-66447 от 14 июля 2016 г.

Издатель: ФГБОУ ВО МГППУ

Creative Commons License

Яндекс.Метрика