Портал психологических изданий PsyJournals.ru
Каталог изданий 95Рубрики 51Авторы 8290Ключевые слова 20372 Online-сборники 1 АвторамRSS RSS

РИНЦ

0,214 — двухлетний импакт-фактор

Моделирование и анализ данных

Издатель: Московский государственный психолого-педагогический университет

ISSN (печатная версия): 2219-3758

ISSN (online): 2311-9454

DOI: http://dx.doi.org/10.17759/mda

Лицензия: CC BY-NC 4.0

Издается с 2011 года

Периодичность: 4 номера в год

Язык журнала: русский

Доступ к электронным архивам: открытый

 

Численный алгоритм поиска субоптимального управления дискретной стохастической системой с вероятностным критерием 66

Тарасов А.Н., студент магистратуры, Московский авиационный институт (национальный исследовательский университет), Москва, Россия, tarrapid@gmail.com
Азанов В.М., аспирант, Московский авиационный институт (национальный исследовательский университет), Москва, Россия, azanov59@gmail.com

Аннотация

Рассматривается численный алгоритм для поиска субоптимального управления для систем, заданных разностными уравнениями. С использованием численного метода удается найти изобеллы уровня 1 и 0, нахождение которых позволяет найти субоптимальное управление, не решая систему, в которой присутствует функция Беллмана, вычисление которой затруднительно. С использованием описанной численной процедуры решается пример, полученный результат сравнивается с аналитически найденым оптимальным управлением.

Ссылка для цитирования

Фрагмент статьи

Задачи оптимального управления по вероятностным критериям качества составляют предмет изучения специального раздела теории стохастического оптимального управления. Основным алгоритмом решения данного типа задач является метод динамического программирования (МДП).

Литература
  1. Азанов В.М. Оптимальное управление линейной дискретной системой по критерию вероятности // Автоматика и Телемеханика. 2014. №10. С. 39–51.
  2. Азанов В.М., Кан Ю.С. Однопараметрическая задача оптимальной коррекции траектории летательного аппарата по критерию вероятности // Изв. РАН Теория и Системы Управления. 2016. №2. С. 115-128.
  3. Азанов В.М. Алгоритмы динамического программирования решения задач оптимального управления дискретной стохастической системой с терминальным вероятностным критерием // Диссертация на соискание учёной степени кандидата физико-математических наук. 2018.
  4. Азанов В.М., Кан Ю.С. Синтез оптимальных стратегий в задачах управления дискретными системами по вероятностному критерию // Автоматика и Телемеханика, 2017, № 6, 57–83.
  5. Азанов В.М., Кан Ю.С. Двухсторонняя оценка функции Беллмана в задачах стохастического оптимального управления дискретными системами по вероятностному критерию качества // Автоматика и Телемеханика, 2018, № 2, C. 3–18.
  6. Кан Ю.С., Кибзун А.И. Задачи стохастического программирования с вероятностными критериями, Физматлит, М., 2009.
  7. Кибзун А.И., Игнатов А.Н. Сведение двухшаговой задачи стохастического оптимального управления с билинейной моделью к задаче смешанного целочисленного линейного программирования. // АиТ. 2016. № 12. С. 89–111.
  8. Малышев В.В., Кибзун А.И. Анализ и синтез высокоточного управления летательными аппаратами. М.:Машиностроение, 1987.
  9. Jasour A.M., Aybat N.S., Lagoa C.M. Semidefinite Programming For Chance Constrained Optimization Over Semialgebraic Sets // SIAM Journal on Optimization 25 (3), 1411–1440, 2015.
  10. Jasour A.M., Lagoa C.M. Convex Chance Constrained Model Predictive Control //arXiv preprint arXiv:1603.07413, 2016.
  11. Smith R.L., “Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions”, Oper. Res., 32:6 (1984), 1296-130
 
О проекте PsyJournals.ru

© 1997–2019 Портал психологических изданий PsyJournals.ru  Все права защищены

Свидетельство регистрации СМИ Эл № ФС77-66447 от 14 июля 2016 г.

Издатель: ФГБОУ ВО МГППУ

Creative Commons License

Яндекс.Метрика