|
|
Color discrimination and color categories 1324
Danilova M.V. PhD in Biology, Leading Researcher, Laboratory of physiology of vision, Pavlov Institute of Physiology, St.Petersburg, Russia e-mail: mar.danilova@gmail.com Mollon J.D. Professor of Visual Neuroscience Department of Experimental
Psychology, University of Cambridge e-mail: jm123@cam.ac.uk
The subjective boundary in colour space between reddish and greenish hues is not aligned with either of the chromatic channels that have been found by electrophysiological recordings from the retina and the lateral geniculate nucleus of primates (Derrington, Krauskopf & Lennie, 1984). Yet we found that chromatic discrimination is enhanced in the vicinity of the perceptual red-green boundary. Thresholds were measured for brief (100-msec) foveal stimuli using a spatial forced-choice procedure: observers were required to judge whether the left or the right half of a bipartite field was the greener. In interleaved runs we also obtained empirical estimates of the subjective boundary between reddish and greenish colours. Both types of measurements (performance measurements of thresholds and subjective judgements of hue) were made in the presence of a steady background that was metameric to CIE Illuminant D65.
To exclude the possibility that larger thresholds in more distant areas from the blue-yellow line arise because of uncertainty in correctly ordering colours that lay within the same category, we ran a control experiment. In this experiment, the task was still a criterion-free forced choice, but the observer had to judge only whether a difference of chromaticity was present. A minimum of the subjects correctly completed this task. Byzov classically proposed the general rule that sensory neural channels are maximally sensitive to perturbations around the activity level set by the background. In the present case, the chromaticities that give the lowest threshold are chromaticities that lie along the subjective red-green hue boundary, implying a neural channel that is aligned with the red-green axis of colour space.
Keywords: colour vision, chromaticity diagram, colour discrimination, colour categories, unique hues, psychophysics
Column: Psychology of Perception
- Byzov A. L., Kuznecova L. P. Adaptacija zritel'noj sistemy //
Nejrofiziologija. 1969. № 1. S. 81–89.
- Izmajlov A., Sokolov E. N., Chernorizov A. M. Psihofiziologija cvetovogo
zrenija. M.: Moskovskij universitet. 1989.
- Korzh N. N., Penova I. V., Safuanova O. V. Denotativnye znachenija
cvetonaimenovanij // Psihologicheskij zhurnal. 1991. № 12 (4). S. 69–79.
- Rautian G. N., Solov'eva V. P. Vlijanie svetlogo okruzhenija na ostrotu
cvetorazlichenija. Doklady Akademii nauk SSSR. 1954. S. 513–515.
- Sokolov E. N., Vartanov A. V. K issledovaniju semanticheskogo cvetovogo
prostranstva // Psihologicheskij zhurnal. 1987. № 8 (2). P. 58–65.
- Beer R. D., Dinca A., MacLeod D. I. A. Ideal white can be yellowish or
bluish, but not reddish or greenish // Journal of Vision. 2006. № 6 (6). P.
417–417.
- Boynton R. M., Nagy A. L., Olson C. X. A flaw in equations for predicting
chromatic differences // Color Research & Application. 1983. № 8. P.
69–74.
- Burns S. A., Elsner A. E., Pokorny J., Smith, V. C. The Abney effect:
chromaticity coordinates of unique and other contrast hues // Vision Res. 1984.
№ 24 (5). P. 479–489.
- Cole G. R., Hine T. Computation of cone contrasts for colour vision
research // Behavioral Research Methods, Instruments and Computers. 1992. № 24.
P. 22–27.
- Dacey D. M., Lee B. B. The ‘blue-on’ opponent pathway in primate retina
originates from a distinct bistratified ganglion cell type // Nature. 1994. №
367. P. 731–735.
- Danilova,M. V., Mollon J. D. Parafoveal color discrimination: A
chromaticity locus of enhanced discrimination // Journal of Vision. 2010. №
10(1):4. P. 1–9, http://journalofvision.org/10/1/4/, doi:10.1167/10.1.4
- Dartnall H. J. A., Bowmaker J. K., Mollon J. D. Human visual pigments:
microspectrophotometric results from the eyes of seven persons // Proc. R. Soc.
1983. B. 220. P. 115–130.
- De Monasterio F. M., Gouras P., Tolhurst D. J. Trichromatic colour
opponency in ganglion cells of the rhesus monkey retina // J. Physiol. 1975. №
251. P. 197–216.
- De Valois R. L., Abramov I., Mead W. R. Single cell analysis of wavelength
discrimination at lateral geniculate nucleus in macaque // J. Neurophysiol.
1967. № 30. P. 415–433.
- DeMarco P. J., Pokorny J., Smith V. C. Full-spectrum cone sensitivity
functions for X-chromosome linked anomalous trichromats // J. Opt. Soc. Am. A.
1992. № 9. P. 1465–1476.
- Derrington A. M., Krauskopf J., Lennie P. Chromatic mechanisms in lateral
geniculate nucleus of macaque // J. Physiol. 1984. № 357. P. 241–265.
- Jordan G., Mollon J. D. Rayleigh matches and unique green // Vision Res.
1995. № 35 (5). P. 613–620.
- Jordan G., Mollon J. D. Unique hues in heterozygotes for protan and deutan
deficiencies // C. R. Cavonius (Ed.) Colour Vision Deficiencies. Dordrecht:
Kluwer. 1997. Р. 67–76.
- Krauskopf J., Gegenfurtner K. Color discrimination and adaptation // Vision
Res. 1992. № 32 (11). P. 2165–2175.
- Liberman A. M., Harris K. S., Hoffman H. S., Griffith B. C. The
discrimination of speech sounds within and across phoneme boundaries // J. Exp.
Psychol. 1957. № 54. P. 358–368.
- Loomis J. M., Berger T. Effects of chromatic adaptation on color
discrimination and color appearance // Vision Res. 1979. № 19. P. 891–901.
- MacLeod D. I. A., Boynton R. M. Chromaticity diagram showing cone
excitation by stimuli of equal luminance // J. Opt. Soc. Am. 1979. № 69. P.
1183–1185.
- Miyahara E., Smith, V. C., Pokorny J. How surrounds affect chromaticity
discrimination // J. Opt. Soc. Am. A. 1993. № 10. P. 545–553.
- Mollon J. D. A neural basis for unique hues? // Current Biology. 2009. №
19. P. 441–442.
- Mollon J. D., Cavonius C. R. The chromatic antagonisms of opponent process
theory are not the same as those revealed in studies of detection and
discrimination // G. Verriest (Ed.) Colour Vision Deficiencies VIII. 1987.
Dordrecht: Martinius Nijhoff/Dr. W. Junk. Р. 473–483.
- Nerger J. L., Volbrecht V. J., Ayde C. J. Unique hue judgements as a
function of test size in the fovea and at 20-deg temporal eccentricity // J.
Opt. Soc. Am. A. 1995. № 12 (6). P. 1225–1232.
- Purdy D. M. Spectral hue as a function of intensity. The American Journal
of psychology. 1931. № 43 (4). P. 541–559.
- Regan B. C., Reffin J. P., Mollon J. D. Luminance noise and the rapid
determination of discrimination ellip-ses in colour deficiency // Vision Res.
1994. № 34 (10). P. 1279–1299.
- Roberson D., Hanley J. R., Pak H. Thresholds for color discrimination in
English and Korean speakers // Cognition. 2009. № 112. P. 482–487.
- Schnapf, J.L., Kraft, T.W., & Baylor, D.A. Spectral sensitivity of
human cone photoreceptors // Nature. 1987. № 325. P. 439–441.
- Smith V. C., Pokorny J. Spectral sensitivity of the foveal cone
photopigments between 400 and 500 nm // Vision Res. 1975. № 15. P.
161–171.
- Smith V. C., Pokorny J. Chromatic-discrimination axes, CRT phosphor
spectra, and individual variation in color vision // J. Opt. Soc. Am. A. 1995.
№ 12 (1). P. 27–35.
- Stoughton C. M., Conway B. R. Neural basis for unique hues // Current
Biology. 2008. № 18. P. 698–699.
- Valberg A., Lee B. B., Tigwell D. A. Neurons with strong inhibitory S-cone
inputs in the macaque lateral geniculate nucleus // Vision Res. 1986. № 26. P.
1061–1064.
- Webster M. A., Webster S. M., Bharadwaj S., Verna R., Jaikumar J., Madan
G., Vaithilingham E. Variations in normal color vision. III. Unique hues in
Indian and United States observers // J. Opt. Soc. Am. A. 2002. № 19 (10). P.
1951–1962.
- Wetherill G. B., Levitt H. Sequential estimation of points on a
psychometric function // British Journal of Mathematical and Statistical
Psychology. 1965. № 18. P. 1–10.
- Winawer J., Witthoft N., Frank M. C., Wu L., Wade A. R., Boroditsky L.
Russian blues reveal effects of language on color discrimination // Proceedings
of the National Academy of Sciences of the United States of America. 2007. №
104 (19). P. 7780–7785.
- Witzel C., Hansen, T., Gegenfurtner K. R. Categorical reaction times for
equally discriminable colours // Perception. 2009. № 38(suppl). 14.
- Wyszecki G., Stiles W. S. Color Science. Concepts and Methods, Quantitative
Data and Formulae. John Wiley & Sons. 1982.
|
|