|
|
Longitudinal studies: theory and methods 7638
Kornilov S.A. PhD in Psychology, Seattle, USA e-mail: sa.kornilov@gmail.com
The article reviews contemporary approaches to understanding longitudinal designs as a group of methods aimed at testing a specific class of hypotheses (about change, its functional form and dynamic parameters). We provide a description of main longitudinal designs and point out their limitations, along with analyzing major validity threats specific to longitudinal studies: the critical review of methodological and methodical problems and possibilities of overcoming them is completed by the brief description of the main statistical approaches for analyzing longitudinal data.
Keywords: longitudinal study, longitudinal design, longitudinal validity, repeated measures hierarchical linear modeling
Column: Mathematical Psychology
- Burmenskaja G. V. Longitjudnyj metod // Jeksperiment i kvazijeksperiment v psihologii / Pod red. T. V. Kornilovoj. SPb.: Piter, 2004. S. 180–192.
- Kornilov S. A., Grigorenko E. L., Smirnov S. D. Longitjudnoe issledovanie akademicheskih, tvorcheskih i prakticheskih sposobnostej kak predposylok uspeshnosti obuchenija // Voprosy psihologii. 2009. № 5. S. 54–65.
- Kornilova T. V. Jeksperimental'naja psihologija. Teorija i metody. M.: Aspekt-Press, 2003.
- Kornilova T. V., Kornilov S. A., Chumakova M. A. Longitjudnoe issledovanie dinamiki uspeshnosti reshenija studentami analiticheskih, tvorcheskih i prakticheskih zadanij // Psihologicheskaja nauka i obrazovanie. 2010. № 1. S. 55–68.
- Mitina O. V. Modelirovanie latentnyh izmenenij s pomow'ju strukturnyh uravnenij // Jeksperimental'naja psihologija. 2008.T. 1. № 1. S. 131–148.
- Baltes P. B., Nesselroade J. R. History and rationale of longitudinal research // Longitudinal research in the study of behavior and development / Eds. J. R. Nesselroade, P. B. Baltes. N.Y: Academic Press, 1979. P. 61–87.
- Bollen K. A., Curran P. J. Latent curve models: A structural equation perspective. Hoboken. N.J.: John Wiley, 2006.
- Cook N. R., Ware J. H. Design and analysis methods for longitudinal research // Annual Review of Public Health. 1983. № 4. P. 1–24.
- Glenn N. Cohort analysis. Beverly Hills, CA: SAGE, 1977.
- Flynn J. R. What environmental factors affect intelligence: The relevance of IQ gains over time // Current topics in human intelligence. V. 5: The environment / Ed. D. Detterman. Norwood. N. J.: Ablex, 1996. P. 17–29.
- Graham J. W. Missing data analysis: Making it work in the real world // Annual Review of Psychology. 2009. № 60. P. 549–576.
- Graham J. W., Hofer S. M. Multiple imputation in multivariate research // Modeling Longitudinal and Multiple-Group Data: Practical Issues, Applied Approaches, and Specific Examples / Eds. T. D. Little, K. U. Schnabel, J. Baumert. Hillsdale, N.J.: Erlbaum, 2000. P. 201–218.
- Holland P. Statistics and causal inference // Journal of American Statistical Association. 1986. V. 81. № 396. P. 945–960.
- Mason K. O., Mason W. M., Winsborough H., Poole W. K. Some methodological issues in cohort analysis of archival data // American Sociological Review. 1973. № 32. P. 242–258.
- Menard S. Longitudinal Research (2nd ed.). Thousand Oaks: SAGE, 2002.
- Menard S. Introduction: Longitudinal research design and analysis // Handbook of longitudinal research / Ed. S. Menard. N.Y.: Elsevier, 2008. P. 3–12.
- Menard S., Elliot D. S., Huizinga D. The dynamics of deviant behavior: A national survey progress report (National Youth Survey Progress Report No. 49). Boulder, CO: Institute of Behavioral Science, 1989.
- Mitchell T. R., James L. R. Building better theory: Time and the specification of when things happen // Academy of Management Review. 2001. № 26. P. 530–547.
- Newcomb M. D., Bentler P. M. Consequences of adolescent drug use: Impact on the lives of young adults. Newbury Park, CA: Sage, 1988.
- Ployhart R. E., Vandenberg R. J. Longitudinal research: The theory, design, and analysis of change // Journal of Management. 2010. V. 36. № 1. P. 94–120.
- Raudenbush S. W. Comparing personal trajectories and drawing causal inferences from longitudinal data // Annual Review of Psychology. 2001. № 52. P. 501–525.
- Raudenbush S. W, Bryk A. S. Hierarchical Linear Models: Applications and Data Analysis Methods (2nd ed). Thousand Oaks, CA: SAGE, 2002.
- Rosenbaum P., Rubin D. The central role of the propensity score in observational studies for causal effects // Biometrika. 1983. № 17. P. 41–55.
- Rubin D. Estimating causal effects of treatments in randomized and non-ran- domized studies // Journal of Educational Psychology. 1974. № 66. P. 688–701.
- Rubin D. Inference and missing data // Biometrika. 1976. № 63. P. 581–592.
- Ryder N. B. The cohort as a concept in the study of social change // American Sociological Review. 1965. № 32. P. 843–861.
- Singer J. D., Willet J. B. Applied longitudinal data analysis: Modeling change and event occurrence. N.Y.: Oxford University Press, 2003.
- Terman L. M., Oden M. H. Genetic studies of genius: The gifted child grows up. Twenty five years’ follow-up of a superior group. Stanford, CA: Stanford University Press, 1947.
- Thomae H. The Bonn Gerontologic Longitudinal Study (BOLSA) // Zeitschrift für Gerontologie, 1993. V. 26. № 3. P. 142–150.
- Twisk J. W. R. Causal inference in longitudinal experimental research // Handbook of longitudinal research / Ed. S. Menard. N. Y.: Elsevier, 2008. P. 279–294.
- Wall W. D., William H. L. Longitudinal studies and the social sciences. London: Heinemann, 1970.
- Willet J. B. Some results on reliability for the longitudinal measurement of change: Implications for the design of studies of individual growth // Educational and Psychological Measurement. 1989. № 49. P. 587–602.
- Vanderberg R. J. Toward improving measurement invariance methods and procedures // Organization Reasearch Methods. 2002. № 5. P. 139–158.
|
|