|
|
Possibilities of automatic text analysis in the task of determining the psychological characteristics of the author 171
Kovalev A.K. Junior Researcher, Federal Research Center ‘Computer Science and Control’ of the Russian Academy of Sciences, Moscow, Russia ORCID: https://orcid.org/0000-0001-7309-7382 e-mail: alexeykkov@gmail.com Kuznetsova Y.M. PhD in Psychology, Senior Researcher, Federal Research Center ‘Computer Science and Control’ of the Russian Academy of Sciences, Moscow, Russia ORCID: https://orcid.org/0000-0001-9380-4478 e-mail: kuzjum@yandex.ru Penkina M.Y. Senior Lecturer of the Department of General Psychology, Moscow State University of Psychology and Education, Moscow, Russia ORCID: https://orcid.org/0000-0001-7046-6963 e-mail: mpenkina@mail.ru Stankevich M.A. Junior Researcher, Federal Research Center ‘Computer Science and Control’ of the Russian Academy of Sciences, Moscow, Russia ORCID: https://orcid.org/0000-0003-0705-5832 e-mail: maxastan95@gmail.com Chudova N.V. PhD in Psychology, Senior Researcher, Federal Research Center ‘Computer Science and Control’ of the Russian Academy of Sciences, Moscow, Russia ORCID: https://orcid.org/0000-0002-3188-0886 e-mail: nchudova@gmail.com
Using a tool for automatic text analysis and machine learning methods developed at the Federal Research Center ‘Computer Science and Control’ of the Russian Academy of Sciences, the first results are obtained in the task of identifying text parameters specific to people with certain psychological characteristics. The tool of corpus linguistic and statistical research, based on the use of relational-situational analysis, psycholinguistic indicators and dictionaries covering the vocabulary of emotional and rational assessment, allowed us to obtain values for 177 textual attributes of the essay written by 486 subjects. To obtain data on the severity of characterological and personality characteristics of the subjects, a number of psychological questionnaires were used. When processing the data, binary classification algorithms were used — the support vector method (SVM) and the Random Forest method. The results allow us to draw conclusions about the prospects of using some textual parameters in problems of population psychodiagnostics and the adequacy of the applied classification algorithms.
This work was partly supported by the Russian Foundation for Basic Research (project No. 17-29-02247 “Development of methods for diagnosing the spread of frustration in network discussions” and project No. 18-00-00233 “Methods for the integrated intellectual analysis of various types of information for social and humanitarian research in social media”).
-
Аlmaev N.А., Dorodnev А.B., Malkova G.YU. Proyavlenie
psikhologicheskoj travmy v avtobiograficheskikh rasskazakh //
EHksperimental’naya psikhologiya. 2009. Tom 2. № 2. S. 104—115. (In
Russ.).
-
Vorontsova O.YU., Enikolopov S.N., Kuznetsova YU.M.,
CHudova N.V. i dr. Lingvisticheskie kharakteristiki tekstov psikhicheski
bol’nykh i zdorovykh lyudej // Psikhologicheskie issledovaniya. 2018. T. 11. №
61. URL: http://psystudy.ru/index.php/num/2018v11n61/1622-enikolopov61.html.
(In Russ.).
-
Devyatkin D.А., Kuznetsova YU.M., CHudova, N.V., SHvets
А.V. Intellektual’nyj analiz proyavlenij verbal’noj agressivnosti v tekstakh
setevykh soobshhestv // Iskusstvennyj intellekt i prinyatie reshenij. 2014, №2,
s. 95—109. (In Russ.).
-
Enikolopov S.N., Kuznetsova YU.M., Smirnov I.V.,
Stankevich M.А., CHudova N.V. Sozdanie instrumenta avtomaticheskogo analiza
teksta v interesakh sotsio-gumanitarnykh issledovanij. CH. 1. Metodicheskie i
metodologicheskie aspekty // Iskusstvennyj intellekt i prinyatie reshenij.
2019. № 2, Str. 28-38. DOI 10.14357/20718594190203. (In Russ.).
-
Enikolopov S.N., Kuznetsova YU.M., Minin А.N., Penkina
M.YU., Smirnov I.V., Stankevich M.А., CHudova N.V. Osobennosti teksta i
psikhologicheskie osobennosti: opyt ehmpiricheskogo komp’yuternogo
issledovaniya // Trudy ISА RАN, 2019, № 3 (v pechati). (In Russ.).
-
Zolotova G.А., Onipenko N.K., Sidorova M.YU.
Kommunikativnaya grammatika russkogo yazyka. M.: In-t rus. yaz. RАN im. V.V.
Vinogradova, 2004. (In Russ.).
-
Kovalyov А.K., Kuznetsova YU.M., Minin А.N., Penkina
M.YU., Smirnov I.V., Stankevich M.А., CHudova N.V. Metody vyyavleniya po tekstu
psikhologicheskikh kharakteristik avtora (na primere agressivnosti) // Voprosy
kiberbezopasnosti. 2019, № 4 (32), c. 72—80. (In Russ.).
-
Litvinova T.А., Litvinova O.А., Ryzhkova E.S., Biryukova
E.D., Seredin P.V., Zagorovskaya O.V. Issledovanie vliyaniya pola i
psikhologicheskikh kharakteristik avtora na kolichestvennye parametry ego
teksta s ispol’zovaniem programmy Linguistic Inquiry and Word Count // Nauchnyj
dialog. 2015. № 2 (48). S. 101—109. (In Russ.).
-
Osipov G.S. Priobretenie znanij intellektual’nymi
sistemami: Osnovy teorii i tekhnologii. M.: Nauka, Fizmatlit, 1997. (In
Russ.).
-
Osipov G.S., Smirnov I.V., Tikhomirov I.А.
Relyatsionno-situatsionnyj metod poiska i analiza tekstov i ego prilozheniya //
Iskusstvennyj intellekt i prinyatie reshenij. 2008. № 2. S. 3—10. (In
Russ.).
-
Esse. Bol’shaya sovetskaya ehntsiklopediya. M.: Sovetskaya
ehntsiklopediya 1969-1978. (In Russ.).
-
Gupta U., Chatterjee A., Srikanth R., & Agrawal P. A
Sentiment-and-Semantics-Based Approach for Emotion Detection in Textual
Conversations // Neu-IR: Workshop on Neural Information Retrieval, SIGIR 2017,
ACM. URL: arXiv:1707.06996.
-
Pennebaker J., Boyd R., Jordan K., Blackburn K. The
development and psychometric properties of LIWC2015. 2015. URL:
https://repositories.lib.utexas.edu/bitstream/handle/2152/31333/LIWC2015_
LanguageManual.pdf.
|
|