|
|
Modeling of human brain diseases in experiments on rodents (brief overview) 1943
The review summarizes the successes and difficulties in creating and using biological models of the human brain diseases, which belongs to the important issues of applied Neurobiology. The review mentions and attempts to theoretically comprehend the relative role of genotype, environmental influences and their dynamic interactions (LEARN concept). The article reviews the examples of developed genetic models of human diseases (Alzheimer's, Down syndrome, Autism, etc.). When creating models of anxiety disorders the focus is made on the difficult problem of "norm" and "pathology", as well as the importance of integrating and understanding species specific behavior of animals used as biological models of this kind.
- A chemical with proven clinical safety rescues Down-syndrome-related
phenotypes in through DYRK1A inhibition. Kim H., [et al.]. Disease Models &
Mechanisms, 2016. Vol. 9, pp. 839–884. doi: 10.1242/dmm.025668
- Shu W., et al. Altered ultrasonic vocalization in mice with a disruption in
the Foxp2 gene. Proceedings of the National Academy of Sciences of the United
States of America. 2005. Vol. 102, no. 27, pp. 9643–9648. doi:
10.1073/pnas.0503739102
- McFarlane H.G., et al. Autism-like behavioral phenotypes in BTBR T+tf/J
mice. Genes, Brain and Behavior, 2007. Vol. 7, no. 2, pp. 152–163. doi:
10.1111/j.1601-183X.2007.00330.x
- Hogg S., et al. Behavioral profiles of genetically selected aggressive and
nonaggressive male wild house mice in two anxiety tests. Behavior Genetics,
2000. Vol. 30, no. 6, pp. 439–446. doi: 10.1023/A:1010246717180
- Belzung C., Le Guisquet A.M., Crestani F. Flumazenil induces benzodiazepine
partial agonist-like effects in BALB/c but not C57BL/6 mice.
Psychopharmacology, 2000. Vol. 148, no. 1, pp. 24–32. doi:
10.1007/s002130050021
- Bilkei-Gorzo A. Genetic mouse models of brain ageing and Alzheimer's
disease. Pharmacol Ther, 2014. Vol. 142, no. 2, pp. 244–257. doi:
10.1016/j.pharmthera.2013.12.009
- Blanchard R.J., Blanchard D.C. Bringing natural behaviors into the
laboratory: a tribute to Paul MacLean. Physiology & Behavior, 2003. Vol.
79, no. 3, pp. 515–524. doi: 10.1016/S0031-9384(03)00157-4
- Bouwknecht J.A., Paylor R. Behavioral and physiological mouse assays for
anxiety: a survey in nine mouse strains. Behavioural Brain Research, 2002. Vol.
136, no. 2, pp. 489–501. doi: 10.1016/S0166-4328(02)00200-0
- Bouwknecht J.A., Paylor R. Pitfalls in the interpretation of genetic and
pharmacological effects on anxiety-like behaviour in rodents. Behavioural
Pharmacology, 2008. Vol. 19, no. 5–6, pp. 385–402. doi:
10.1097/FBP.0b013e32830c3658
- Chadman K.K. Fluoxetine but not risperidone increases sociability in the
BTBR mouse model Pharmacology. Pharmacology Biochemistry and Behavior, 2011.
Vol. 97, no. 3, pp. 586–594. doi: 10.1016/j.pbb.2010.09.012
- Ohl F., et al. Cognitive performance in rats differing in their inborn
anxiety. Behavioral Neuroscience, 2002. Vol. 116, no. 3, P. 464–471. doi:
10.1037/0735-7044.116.3.464
- Brenndörfer J., et al. Connecting anxiety and genomic copy number
variation: a genome-wide analysis in CD-1 Mice. PLoS One, 2015. Vol. 10, no. 5.
doi: 10.1371/journal.pone.0128465
- Crawley J.N., Davis L.G. Baseline exploratory activity predicts anxiolytic
responsiveness to diazepam in five mouse strains. Brain Research Bulletin,
1982. Vol. 8, no. 6, pp. 609–612. doi: 10.1016/0361-9230(82)90087-9
- Wahlsten D., et al. Different data from different labs: lessons from
studies of gene-environment interaction. Journal of neurobiology, 2003. Vol.
54, no. 1, pp. 283–311. doi: 10.1002/neu.10173
- Hager T., et al. Display of individuality in avoidance behavior and risk
assessment of inbred mice. Frontiers in Behavioral Neuroscience, 2014. Vol. 8,
pp. 1–12. doi: 10.3389/fnbeh.2014.00314
- Simmons R.K., et al. DNA methylation in the developing hippocampus and
amygdala of anxiety-prone versus risk-taking rats. Developmental neuroscience,
2012. Vol. 34, no. 1, pp. 58–67. doi: 10.1159/000336641
- Enard W. FOXP2 and the role of cortico-basal ganglia circuits in speech and
language evolution. Current Opinion in Neurobiology, 2011. Vol. 21, no. 3, pp.
415–424. doi: 10.1016/j.conb.2011.04.008
- Ennaceur A., Chazot P.L. Preclinical animal anxiety research – flaws and
prejudices. Pharmacology Research & Perspectives, 2016. Vol. 4, no. 2, pp.
1–37. doi: 10.1002/prp2.223
- Ennaceur A. Tests of unconditioned anxiety – pitfalls and disappointments.
Physiology & Behavior, 2014. Vol. 135, pp. 55–71 doi:
10.1016/j.physbeh.2014.05.032
- Mitchell K.J., et al. Following the genes: a framework for animal modeling
of psychiatric disorders. BMC Biology, 2011. Vol. 9, no. 76, pp. 1–13. doi:
10.1186/1741-7007-9-76
- McBrayer Z.L., et al. Forebrain-specific loss of BMPRII in mice reduces
anxiety and increases object exploration. PLoS One, 2015. Vol. 10, no. 10, pp.
1–19. doi: 10.1371/journal.pone.0139860
- Guillot P.V., Chapouthier G. Intermale aggression and dark/light preference
in ten inbred mouse strains. Behavioural Brain Research, 1996. Vol. 77, no.
1–2, pp. 211–213. doi: 10.1016/0166-4328(95)00163-8
- Sakurai T., et al. Haploinsufficiency of Gtf2i, a gene deleted in Williams
Syndrome, leads to increases in social interactions. Autism Research, 2011.
Vol. 4, pp. 28–39. doi: 10.1002/aur.169
- D'Amico D., et al. Infralimbic Neurotrophin-3 Infusion Rescues Fear
Extinction Impairment in a Mouse Model of Pathological Fear.
Neuropsychopharmacology, 2017. Vol. 42, no. 2, pp. 462–472. doi:
10.1038/npp.2016.154
- Insel T.R. From animal models to model animals. Biol Psychiatry, 2007. Vol.
62, no. 12, pp. 1337–1339. doi: 10.1016/j.biopsych.2007.10.001
- Ramos A., et al. Integrating the open field, elevated plus maze and
light/dark box to assess different types of emotional behaviors in one single
trial. Behavioural Brain Research, 2008. Vol. 193, no. 2, pp. 277–288. doi:
10.1016/j.bbr.2008.06.007
- Isaksen T.J., Lykke-Hartmann K. Insights into the Pathology of the
α2-Na(+)/K(+)-ATPase in Neurological Disorders; Lessons from Animal Models.
Frontiers in physiology, 2016. Vol. 7, no. 161, pp. 44–52. doi:
10.3389/fphys.2016.00161
- Jacobson L.H., Cryan J.F. Genetic approaches to modeling anxiety in
animals. Behavioral Neurobiology of Anxiety and Its Treatment. Springer Berlin
Heidelberg. 2009. Vol. 2, pp. 161–201. doi: 10.1007/7854_2009_31
- Lahiri D.K., Maloney B., Zawia N.H. The LEARn model: an epigenetic
explanation for idiopathic neurobiological diseases. Molecular psychiatry,
2009. Vol. 14, pp. 992–1003. doi: 10.1038/mp.2009.82
- Lalonde R., Strazielle C. Relations between open-field, elevated plus-maze,
and emergence tests in C57BL/6J and BALB/c mice injected with GABA- and
5HT-anxiolytic agents. Fundamental & clinical pharmacology, 2010. Vol. 24,
no. 3, pp. 365–376. doi: 10.1111/j.1472-8206.2009.00772.x
- Landgraf R., Wigger A. High vs low anxiety-related behavior rats: an animal
model of extremes in trait anxiety. Behavior Genetics, 2002. Vol. 32, no. 5,
pp. 301–314. doi: 10.1023/A:1020258104318
- Voikar V., et al. Long-term individual housing in C57BL/6J and DBA/2 mice:
assessment of behavioral consequences. Genes, Brain and Behavior, 2005. Vol. 4,
no. 4, pp. 240–252. doi: 10.1111/j.1601-183X.2004.00106.x
- Löscher W. Fit for purpose application of currently existing animal models
in the discovery of novel epilepsy therapies. Epilepsy Research, 2016. Vol.
126, pp. 157–184. doi: 10.1016/j.eplepsyres.2016.05.016.
- Babineau B.A., et al. Mainstreaming Mice. Neuropsychopharmacology, 2012.
Vol. 37, no. 1, pp. 300–301; doi: 10.1038/npp.2011.168
- Martínez-Cué C., Delatour B., Potier M.C. Treating enhanced GABAergic
inhibition in Down syndrome: use of GABA α5-selective inverse agonists.
Neuroscience & Biobehavioral Reviews, 2014. Vol. 46, no. 2, pp. 218–227.
doi: 10.1016/j.neubiorev.2013.12.008
- Matzel L.D., Kolata S. Selective attention, working memory, and animal
intelligence. Neuroscience & Biobehavioral Reviews, 2010. Vol. 34, no. 1,
pp. 23–30 doi: 10.1016/j.neubiorev.2009.07.002
- McEwen B.S., Gray J.D., Nasca C. 60 years of neuroendocrinology: Redefining
neuroendocrinology: stress, sex and cognitive and emotional regulation.Journal
of endocrinology, 2015. Vol. 226, no. 2, pp. T67-T83. doi:
10.1530/JOE-15-0121
- McKinney P. Teaching model for rhinoplasty. Plastic & Reconstructive
Surgery, 1984. Vol. 74, no. 6, pp. 846–846.
- Mo C., Renoir T., Hannan A.J. What's wrong with my mouse cage?
Methodological considerations for modeling lifestyle factors and
gene-environment interactions in mice. Journal of Neuroscience Methods, 2016.
Vol. 265, pp. 99–108. doi: 10.1016/j.jneumeth.2015.08.008
- Möhler H. Cognitive enhancement by pharmacological and behavioral
interventions: the murine Down syndrome model. Biochemical Pharmacology, 2012.
Vol. 84, no. 8, pp. 994–999. doi: 10.1016/j.bcp.2012.06.028
- Kanari K., et al. Multidimensional structure of anxiety-related behavior in
early-weaned rats. Behavioural Brain Research, 2005. Vol. 156, no. 1, pp.
45–52. doi: 10.1016/j.bbr.2004.05.008
- Ditzen C., et al. Protein Biomarkers in a Mouse Model of Extremes in Trait
Anxiety [Electronic resource]. Molecular & Cellular Proteomics. 2006. Vol.
5, no. 10, pp. 1914–1920. URL:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.575.2694&rep=rep1&type=pdf
(Accessed 26.12.2016).
- Qureshi I.A., Mehler M.F. Epigenetics and therapeutic targets mediating
neuroprotection. Brain Research, 2015. Vol. 1628, Part B, pp. 265–272 doi:
10.1016/j.brainres.2015.07.034
- Potier M.C., et al. Reducing GABAergicinhibition restores cognitive
functions in a mouse model of Down syndrome. CNS Neurol Disord Drug Targets,
2014. Vol. 13, no. 1, pp. 8–15. doi: 10.2174/18715273113126660185
- Laviola G., et al. Risk-taking behavior in adolescent mice:
psychobiological determinants and early epigenetic influence. Neuroscience and
Biobehavioral Reviews, 2003. Vol. 27, no. 1–2, pp. 19–31. doi:
10.1016/S0149-7634(03)00006-X
- Rodgers R.J. Animal models of 'anxiety': where next? [Electronic resource]
Behavioural pharmacology, 1997. Vol. 8, no. 6–7, pp. 477–496. URL:
http://journals.lww.com/behaviouralpharm/Abstract/1997/11000/Animal_models_of__anxiety___where_next_.3.aspx
(Accessed 26.12.2016).
- Scattoni M.L., Ricceri L., Crawley J.N. Unusual repertoire of vocalizations
in adult BTBR T+tf/J mice during three types of social encounters. Genes, Brain
and Behavior, 2011. Vol. 10, no. 1, pp. 44–56. doi:
10.1111/j.1601-183X.2010.00623.x
- D. Colas, et al. Short-term treatment with the GABAA receptor antagonist
pentylenetetrazole produces a sustained pro-cognitive benefit in a mouse model
of Down's syndrome. British journal of pharmacology, 2013. Vol. 169, no. 5, pp.
963–973. doi: 10.1111/bph.12169
- McEwen B.S., et al. The brain on stress: Insight from studies using the
Visible Burrow System. Physiology & Behavior, 2015. Vol. 146, pp. 47–56.
doi: 10.1016/j.physbeh.2015.04.015
- Poletaeva I.I., et al. The Krushinsky-Molodkina rat strain: The study of
audiogenic epilepsy for 65years. Epilepsy & Behavior, 2015. doi:
10.1016/j.yebeh.2015.04.072
- Vorhees C.V., Makris S.L. Assessment of learning, memory, and attention in
developmental neurotoxicity regulatory studies: synthesis, commentary, and
recommendations. Neurotoxicology and Teratology, 2015. Vol. 52, Part A, pp.
109–115. doi: 10.1016/j.ntt.2015.10.004
- Yee B.K., Singer P. A conceptual and practical guide to the behavioural
evaluation of animal models of the symptomatology and therapy of schizophrenia.
Cell and Tissue Research, 2013. Vol. 354, no. 1, pp. 221–246. doi:
10.1007/s00441-013-1611-0
|
|