|
|
Neurocognitive aspects of timing and sensorimotor synchronization 260
The article presents a review of the neurocognitive studies of time perception, timing, and sensorimotor synchronization. These fundamental abilities of humans and animals are an essential component of many cognitive processes: speech, memory, attention, planning, and forecasting. Violations of the processes of timing and sensorimotor integration and synchronization accompany some disorders in the motor and cognitive spheres: speech and language problems, autism, ADHD, neurodegenerative diseases, memory disorders. Many brain structures are involved in the implementation of timing processes: motor cortex, cerebellum, basal ganglia, some brain stem structures. The emotional valence and arousal of stimuli change the subjective perception of their duration. It is important to note the positive role of training time and rhythm perception and movements to rhythmic sounds and music in the rehabilitation process.
- Kovaleva A.V. Fiziologicheskie osnovy vospriyatiya i vosproizvedeniya ritma
v nevrologii [Physiological basis of perception and reproduction of rhythm in
neurology] [Elektronnyi resurs]. Russkii meditsinskii zhurnal. Nevrologiya =
Russian Medical Journal. Neurology, 2018. Vol. 26, no. 12-1, P. 61–66. URL:
https://www.rmj.ru/articles/nevrologiya/Fiziologicheskie_osnovy_vospriyatiya_i_vosproizvedeniya_ritma_v_nevrologii/
(Accessed 08.06.2020). (In Russ.).
- Sares A.G. et al. Adults who stutter and metronome synchronization:
evidence for a nonspeech timing deficit. Annals of the New York Academy of
Sciences, 2019. Vol. 1449, no. 1, pp. 56–69. DOI:10.1111/nyas.14117
- Bobin-Bègue A., Droit-Volet S., Provasi J. Young children’s difficulties in
switching from rhythm production to temporal interval production (> 1 s).
Frontiers in psychology, 2014. Vol. 5, article ID 1346, 10 p.
DOI:10.3389/fpsyg.2014.01346
- Bradley M., Lang P. International affective digitized sounds (IADS):
Stimuli, instruction manual and affective ratings: Technical Report no. b-2:
Vol. 803. 1999. 49 p.
- Buhusi C.V., Meck W.H. Interval timing with gaps and distracters:
evaluation of the ambiguity, switch, and time-sharing hypotheses. Journal of
experimental psychology: Animal behavior processes, 2006. Vol. 32, no. 3,
pp. 329–338. DOI:10.1037/0097-7403.32.3.329
- Molinari M. et al. Cerebellum and detection of sequences, from perception
to cognition. The Cerebellum, 2008. Vol. 7, no. 4, pp. 611–615.
DOI:10.1007/s12311-008-0060-x
- Ptacek R. et al. Clinical Implications of the Perception of Time in
Attention Deficit Hyperactivity Disorder (ADHD): A Review. Medical science
monitor: international medical journal of experimental and clinical
research, 2019. Vol. 25, pp. 3918–3924. DOI:10.12659/MSM.914225
- Cheng R.K. et al. Clock speed as a window into dopaminergic control of
emotion and time perception. Timing & Time Perception, 2016. Vol. 4,
no. 1, pp. 99–122. DOI:10.1163/22134468-00002064
- Corriveau K.H., Goswami U. Rhythmic motor entrainment in children with
speech and language impairments: tapping to the beat. Cortex, 2009. Vol.
45, no. 1, pp. 119–130. DOI:10.1016/j.cortex.2007.09.008
- Cos I., Girard B., Guigon E. Balancing out dwelling and moving: optimal
sensorimotor synchronization. Journal of neurophysiology, 2015. Vol.
114, no. 1, pp. 146–158. DOI:10.1152/jn.00175.2015
- Coull J.T., Cheng R.K., Meck W.H. Neuroanatomical and neurochemical
substrates of timing. Neuropsychopharmacology, 2011. Vol. 36, no. 1, pp.
3–25. DOI:10.1038/npp.2010.113
- Okuda J. et al. Differential involvement of regions of rostral prefrontal
cortex (Brodmann area 10) in time-and event-based prospective memory.
International Journal of Psychophysiology, 2007. Vol. 64, no. 3, pp.
233–246. DOI:10.1016/j.ijpsycho.2006.09.009
- Zachopoulou E. et al. Differentiation of parameters for rhythmic ability
among young tennis players, basketball players and swimmers. European
Journal of Physical Education, 2000. Vol. 5, no. 2, pp. 220–230.
DOI:10.1080/1740898000050208
- Provasi J. et al. Disrupted sensorimotor synchronization, but intact rhythm
discrimination, in children treated for a cerebellar medulloblastoma.
Research in developmental disabilities, 2014. Vol. 35, no. 9, pp.
2053–2068. DOI:10.1016/j.ridd.2014.04.024
- Jerde T.A. et al. Dissociable systems of working memory for rhythm and
melody. Neuroimage, 2011. Vol. 57, no. 4, pp. 1572–1579.
DOI:10.1016/j.neuroimage.2011.05.061
- Matthews A.R. et al. Dissociation of the role of the prelimbic cortex in
interval timing and resource allocation: beneficial effect of norepinephrine
and dopamine reuptake inhibitor nomifensine on anxiety-inducing distraction.
Frontiers in integrative neuroscience, 2012. Vol. 6, article ID 111, 12
p. DOI:10.3389/fnint.2012.00111
- O'Reilly J.X. et al. Distinct and overlapping functional zones in the
cerebellum defined by resting state functional connectivity. Cerebral
cortex, 2010. Vol. 20, no. 4, pp. 953–965. DOI:10.1093/cercor/bhp157
- Donnellan A.M., Hill D.A., Leary M.R. Rethinking autism: implications of
sensory and movement differences for understanding and support. Frontiers in
integrative neuroscience, 2013. Vol. 6, 11 p.
DOI:10.3389/fnint.2012.00124
- Droit‐Volet S., Brunot S., Niedenthal P. Brief report: Perception of the
duration of emotional events. Cognition and Emotion, 2004. Vol. 18, no.
6, pp. 849–858. DOI:10.1080/02699930341000194
- Droit-Volet S., Meck W.H. How emotions colour our perception of time.
Trends in cognitive sciences, 2007. Vol. 11, no. 12, pp. 504–513.
DOI:10.1016/j.tics.2007.09.008
- Buijink A. et al. Essential tremor, the olivocerebellar system and motor
timing–An fMRI study. Clinical Neurophysiology, 2016. Vol. 127, no. 3, 6
p. DOI:10.1016/j.clinph.2015.10.020
- Grahn J.A. Neural mechanisms of rhythm perception: current findings and
future perspectives. Topics in cognitive science, 2012. Vol. 4, no. 4,
pp. 585–606. DOI:10.1111/j.1756-8765.2012.01213.x
- Grondin S. Timing and time perception: a review of recent behavioral and
neuroscience findings and theoretical directions. Attention, Perception,
& Psychophysics, 2010. Vol. 72, no. 3, pp. 561–582.
DOI:10.3758/APP.72.3.561
- Holm L., Ullén F., Madison G. Motor and executive control in repetitive
timing of brief intervals. Journal of Experimental Psychology: Human
Perception and Performance, 2013. Vol. 39, no. 2, pp. 365–380.
DOI:10.1037/a0029142
- Noulhiane M. et al. How Emotional Auditory Stimuli Modulate Time
Perception. Emotion, 2007. Vol. 7, no. 4, pp. 697–704.
DOI:10.1037/1528-3542.7.4.697
- White-Schwoch T.A. et al. Individual differences in rhythm skills: links
with neural consistency and linguistic ability. Journal of Cognitive
Neuroscience, 2017. Vol. 29, no. 5, pp. 855–868.
DOI:10.1162/jocn_a_01092
- Karmarkar U.R., Buonomano D.V. Timing in the absence of clocks: encoding
time in neural network states. Neuron, 2007. Vol. 53, no. 3, pp.
427–438. DOI:10.1016/j.neuron.2007.01.006
- Kotz S.A., Ravignani A., Fitch W.T. The evolution of rhythm processing.
Trends in cognitive sciences, 2018. Vol. 22, no. 10, pp. 896–910.
DOI:10.1016/j.tics.2018.08.002
- Lang P.J., Bradley M.M., Cuthbert B.N. International affective picture
system (IAPS): Affective ratings of pictures and instruction manual. Technical
report A-6. Gainesville, Fl. : NIMH, Center for the Study of Emotion &
Attention, 2005.
- Martel A.C., Apicella P. Temporal processing in the striatum: interplay
between midbrain dopamine neurons and striatal cholinergic interneurons.
European Journal of Neuroscience, 2020. 10 p. (In press).
DOI:10.1111/ejn.14741
- McGrew K., Vega A. The efficacy of rhythm-based (mental timing) treatments
with subjects with a variety of clinical disorders: A brief review of
theoretical, diagnostic, and treatment research. Institute for Applied
Psychometrics Research Report. 2009, no. 9, 32 p.
- Meck W.H., MacDonald C.J. Amygdala inactivation reverses fear's ability to
impair divided attention and make time stand still. Behavioral
neuroscience, 2007. Vol. 121, no. 4, pp. 707–720.
DOI:10.1037/0735-7044.121.4.707
- Monier F., Droit-Volet S. Development of sensorimotor synchronization
abilities: Motor and cognitive components. Child Neuropsychology, 2019.
Vol. 25, no. 8, pp. 1043–1062. DOI:10.1080/09297049.2019.1569607
- Paton J.J., Buonomano D.V. The neural basis of timing: distributed
mechanisms for diverse functions. Neuron, 2018. Vol. 98, no. 4, pp.
687–705. DOI:10.1016/j.neuron.2018.03.045
- Repp B.H., Su Y.H. Sensorimotor synchronization: a review of recent
research (2006–2012). Psychonomic bulletin & review, 2013. Vol. 20,
no. 3, pp. 403–452. DOI:10.3758/s13423-012-0371-2
- Tanaka M. et al. Roles of the cerebellum in motor preparation and
prediction of timing. Neuroscience, 2020. 30 p. (In press).
DOI:10.1016/j.neuroscience.2020.04.039
- Stoodley C.J., Valera E.M., Schmahmann J.D. Functional topography of the
cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage,
2012. Vol. 59, no. 2, pp. 1560–1570. DOI:10.1016/j.neuroimage.2011.08.065
- Sugiyama T., Liew S.L. The Effects of Sensory Manipulations on Motor
Behavior: From Basic Science to Clinical Rehabilitation. Journal of motor
behavior, 2017. Vol. 49, no. 1, pp. 67–77.
DOI:10.1080/00222895.2016.1241740
- Konoike N. et al. Temporal and motor representation of rhythm in
fronto-parietal cortical areas: an fMRI study. PloS one, 2015. Vol. 10,
no. 6, 19 p. DOI:10.1371/journal.pone.0130120
- Thaut M.H., Abiru M. Rhythmic auditory stimulation in rehabilitation of
movement disorders: a review of current research. Music Perception: An
Interdisciplinary Journal, 2010. Vol. 27, no. 4, pp. 263–269.
DOI:10.1525/mp.2010.27.4.263
- Angrilli A. et al. The influence of affective factors on time perception
[Электронный ресурс]. Perception & psychophysics, 1997. Vol. 59, no.
6, pp. 972–982. URL:
https://link.springer.com/content/pdf/10.3758/BF03205512.pdf (Accessed
08.06.2020).
- Tierney A.T., Kraus N. The ability to tap to a beat relates to cognitive,
linguistic, and perceptual skills. Brain and language, 2013. Vol. 124,
no. 3, pp. 225–231. DOI:10.1016/j.bandl.2012.12.014
- Droit-Volet S. et al. Time perception in children treated for a cerebellar
medulloblastoma. Research in developmental disabilities, 2013. Vol. 34,
no. 1, pp. 480–494. DOI:10.1016/j.ridd.2012.09.006
- Janzen T.B. et al. Timing skills and expertise: discrete and continuous
timed movements among musicians and athletes. Frontiers in psychology,
2014. Vol. 5, article ID 1482, 11 p. DOI:10.3389/fpsyg.2014.01482
- Mioni G. et al. Understanding time perception through non-invasive brain
stimulation techniques: A review of studies. Behavioural brain research,
2020. Vol. 377, article ID 112232. 17 p. DOI:10.1016/j.bbr.2019.112232
- Van de Vorst R., Gracco V.L. Atypical non-verbal sensorimotor
synchronization in adults who stutter may be modulated by auditory feedback.
Journal of fluency disorders, 2017. Vol. 53, pp. 14–25.
DOI:10.1016/j.jfludis.2017.05.004
- Vicario C.M. Cognitively controlled timing and executive functions develop
in parallel? A glimpse on childhood research. Frontiers in behavioral
neuroscience, 2013. Vol. 7, article ID 146, 4 p.
DOI:10.3389/fnbeh.2013.00146
- Williams K.E. Moving to the beat: Using music, rhythm, and movement to
enhance self-regulation in early childhood classrooms. International Journal
of Early Childhood, 2018. Vol. 50, no. 1, pp. 85–100.
DOI:10.1007/s13158-018-0215-y
|
|