Russian Psychological Issues
JournalsTopicsAuthorsEditor's Choice For AuthorsAbout PsyJournals.ruContact Us

Previous issue (2021. Vol. 11, no. 1)

Modelling and Data Analysis

Publisher: Moscow State University of Psychology and Education

ISSN (printed version): 2219-3758

ISSN (online): 2311-9454


License: CC BY-NC 4.0

Started in 2011

Published 4 times a year

Free of fees
Open Access Journal


Assessment of Bayesian Ternary Gaze Classification Algorithm (I-BDT) 43


Zherdev I.Yu.
Affiliatedr Researcher, Moscow State University of Psychology & Education, Moscow, Russia

I-BDT eyetracking data ternary classification (fixations, saccades, smooth pursuit) algorithm is investigated. Comparison with well-known Identification / Dispersion Threshold (I-DT) algorithm is held (accuracy, precision, recall, F1 measure). A novel approach for additionally filtering the algorithm output by distance/amplitude, area of convex hull is described.

Keywords: smooth pursuit, classification, Bayesian decision theory, eye movements

Column: Software


For Reference

  1. Santini T., Fuhl W., Kübler T., et al. Bayesian identification of fixations, saccades, and smooth pursuits. ACM ETRA. Charleston, 2016. pp. 163–170. DOI:10.1145/2857491.2857512
  2. Nyström M., Andersson R., Holmqvist K., et al. The influence of calibration method and eye physiology on eyetracking data quality. Behav. Res. Met. 2013. Vol. 45, no 1, pp. 272–288. DOI:10.3758/s13428–012–0247–4
  3. Hooge I., Holmqvist K., Nyström M. The pupil is faster than the corneal reflection (CR): Are video based pupil-CR eye trackers suitable for studying detailed dynamics of eye movements? Vis. Res. 2016. Vol. 128, pp. 6–18. DOI:10.1016/j.visres.2016.09.002.
  4. Larsson L., Nyström M., Ardö H., et al. Smooth pursuit detection in binocular eye-tracking data with automatic video-based performance evaluation. J. Vis. 2016. Vol. 16, no 15, pp. 20. DOI:10.1167/16.15.20
  5. Startsev M., Agtzidis I., Dorr M. 1D CNN with BLSTM for automated classification of fixations, saccades, and smooth pursuits. Behav. Res. Met. 2019. Vol. 51, pp. 556–572. DOI:10.3758/s13428–018–1144–2
  6. Zemblys R., Niehorster D.C., Komogortsev O., et al. Using machine learning to detect events in eye-tracking data. Behav. Res. Met. 2018. Vol. 50, pp. 160–181. DOI:10.3758/s13428–017–0860–3
  7. Komogortsev O.V., Karpov A. Automated classification and scoring of smooth pursuit eye movements in the presence of fixations and saccades. Behav. Res. Met. 2013. Vol. 45, pp. 203–215. DOI:10.3758/s13428–012–0234–9
  8. Komogortsev O. V, Gobert D. V, Jayarathna S., et al. Standartization of automated analyses of oculomotor fixation and saccadic behaviors. IEEE Trans. Biomed. Eng. 2010. Vol. 57, no 11, pp. 2635–2645. DOI:10.1109/tbme.2010.2057429
  9. Kashyap H.J., Detorakis G., Dutt N., et al. A recurrent neural network based model of predictive smooth pursuit eye movement in primates. IEEE IJCNN. Rio de Janeiro, 2018. pp. 5353–5360. DOI:10.1109/IJCNN.2018.8489652
  10. Xivry J.J.O. de, Coppe S., Blohm G., et al. Kalman Filtering Naturally Accounts for Visually Guided and Predictive Smooth Pursuit Dynamics. J. Neurosci. 2013. Vol. 33, no 44, pp. 17301–17313. DOI:10.1523/JNEUROSCI.2321–13.2013

© 2007–2021 Portal of Russian Psychological Publications. All rights reserved in Russian

Publisher: Moscow State University of Psychology and Education

Catalogue of academic journals in psychology & education MSUPE

Creative Commons License Open Access Repository     Webometrics Ranking of Repositories

RSS Psyjournals at facebook Psyjournals at Twitter Psyjournals at Youtube ??????.???????