|
|
The concept of Decision Support System for psychological testing 925
Kuravsky L.S. Doctor of Engineering, Dean of the Computer Science Faculty, Moscow State University of Psychology and Education, Moscow, Russia ORCID: https://orcid.org/0000-0002-3375-8446 e-mail: l.s.kuravsky@gmail.com Margolis A.A. PhD in Psychology, Rector, Professor, Chair of Pedagogical Psychology, Moscow State University of Psychology & Education, Moscow, Russia ORCID: https://orcid.org/0000-0001-9832-0122 e-mail: margolisaa@mgppu.ru Yuryev G.A. PhD in Physics and Matematics, Associate Professor, Head of Scientifi c Laboratory, Moscow State University of Psychology and Education, Moscow, Russia ORCID: https://orcid.org/0000-0002-2960-6562 e-mail: g.a.yuryev@gmail.com Marmalyuk P.A. PhD in Engineering, Head of the Laboratory of Psychology and Applied Software, Moscow State University of Psychology & Education, Moscow, Russia e-mail: ykk.mail@gmail.com
The concept of a decision support system designed to optimize the order of tasks during psychological testing and based on trained continuous-time Markov models is presented. Diagnostic conclusions are derived using probabilistic estimates of being in different subject’s classes. These estimates are improved during testing procedure. Selection of a regular task is carried out for each subject individually, with previous testing outcome and forecasting the discriminating fineness of future tasks being in use.
Keywords: Markov models, psychological testing, identification of Markov models, decision support system
Column: Psychological Diagnostics
- Galushkin A.I. Nejronnye seti. Osnovy teorii. M., 2010.
- Golovko V. A. Nejronnye seti: obuchenie, organizacija i primenenie:
Ucheb. posobie. M., 2001.
- Dzhekson P. Vvedenie v jekspertnye sistemy: Ucheb. posobie. M.,
2001.
- Dzhons M.T. Programmirovanie iskusstvennogo intellekta v
prilozhenijah. M., 2004.
- Kramer G. Matematicheskie metody statistiki. M., 1976.
- Kuravskij L.S., Baranov S.N. Primenenie nejronnyh setej dlja
diagnostiki i prognozirovanija ustalostnogo razrushenija tonkostennyh
konstrukcij // Nejrokomp'jutery: razrabotka i primenenie. 2001. № 12.
- Kuravskij L.S., Baranov S.N. Sintez setej Markova dlja
prognozirovanija ustalostnogo razrushenija // Nejrokomp'jutery: razrabotka i
primenenie. 2002. № 12.
- Kuravskij L.S., Baranov S.N., Kornienko P.A. Obuchaemye
mnogofaktornye seti Markova i ih primenenie dlja issledovanija psihologicheskih
harakteristik // Nejrokomp'jutery: razrabotka i primenenie. 2005. № 12.
- Kuravskij L.S., Baranov S.N., Jur'ev G.A. Sintez i identifikacija
skrytyh markovskih modelej dlja diagnostiki ustalostnogo razrushenija //
Nejrokomp'jutery: razrabotka i primenenie. 2010. № 12.
- Kuravskij L.S., Margolis A.A., Jur'ev G.A. Psihologicheskij trening
na osnove nejrosetevoj tehnologii // Nejrokomp'jutery: razrabotka i primenenie.
2009. № 9.
- Kuravskij L.S., Jur'ev G.A. Ispol'zovanie markovskih modelej pri
obrabotke rezul'tatov testirovanija // Voprosy psihologii. 2011. № 2.
- Ljuger Dzh. F. Iskusstvennyj intellekt: strategii I metody reshenija
slozhnyh problem. M., 2003.
- Ovcharov L.A. Prikladnye zadachi teorii massovogo obsluzhivanija.
M., 1969.
- Psihodiagnostika v Rossii cherez 5 let // Psihologija. Zhurn. Vysshej
shkoly jekonomiki. T. 5. 2008. № 4.
- Saati T.L. Jelementy teorii massovogo obsluzhivanija i ejo
prilozhenija. M., 2010.
- Kuravsky L.S. and Baranov S.N. Condition monitoring of the
structures suffered acoustic fatigue failure and forecasting their service
life. Proc. Condition Monitoring 2003, Oxford, United Kingdom, July 2003.
- Kuravsky L.S. and Baranov S.N. Neural networks in fatigue damage
recognition: diagnostics and statistical analysis // Proc. 11th International
Congress on Sound and Vibration, St.-Petersburg, July 2004.
- Kuravsky L.S. and Baranov S.N. The concept of multifactor Markov
networks and its application to forecasting and diagnostics of technical
systems // Proc. Condition Monitoring 2005, Cambridge, United Kingdom, July
2005.
- Kuravsky L.S., Baranov S.N. and Yuryev G.A. Synthesis and
identification of hidden Markov models based on a novel statistical technique
in condition monitoring // Proc. 7th International Conference on Condition
Monitoring & Machinery Failure Prevention Technologies,
Stratford-upon-Avon, England, June 2010.
- URL: http:// www.solver.com.
|
|