Моделирование и анализ данных 2023. Том 13. № 2. С. 99–122 DOI: https://doi.org/10.17759/mda.2023130206 ISSN: 2219-3758 (печатный) ISSN: 2311-9454 (online) © 2023 ФГБОУ ВО МГППУ © 2023

Modelling and Data Analysis 2023. Vol. 13, no. 2, pp. 99–122 130206 DOI: https://doi.org/10.17759/mda.2023130206 ISSN: 2219-3758 (print) ISSN: 2311-9454 (online) © 2023 Moscow State University of Psychology & Education

УДК 519.853, 517.977.58

Псевдоспектральный метод поиска оптимального управления пучками траекторий на базе мультиагентных алгоритмов оптимизации

Каранэ М.М.С.*

Московский авиационный институт (национальный исследовательский университет) (МАИ) г. Москва, Российская Федерация ORCID: https://orcid.org/0000-0002-8019-8613 e-mail: mm_karane@mail.ru

Рассмотрен класс задач оптимального управления нелинейными непрерывными детерминированными системами в условиях неопределенности. Для решения поставленной задачи сформирован численный алгоритм поиска оптимального управления, в котором применяется параметризация закона управления, зависящего от времени и набора координат вектора состояния, доступных измерению. Данный подход основан на аппроксимации закона управления рядом по системе базисных функций с неизвестными коэффициентами. Поиск неизвестных коэффициентов в разложении закона управления, реализуется с применением мультиагентных методов оптимизации: гибридного мультиагентного алгоритма интерполяционного поиска и мультиагентного алгоритма, основанного на использовании линейных регуляторов управления движением агентов. Разработан комплекс программ и решены два модельных примера и прикладная задача о стабилизации спутника с помощью установленных на нем двигателей.

Ключевые слова: оптимальное управление, мультиагентные алгоритмы оптимизации, пучок траекторий, полиномы Чебышева, псевдоспектральный метод.

Для цитаты:

Каранэ М.М.С. Псевдоспектральный метод поиска оптимального управления пучками траекторий на базе мультиагентных алгоритмов оптимизации // Моделирование и анализ данных. 2023. Том 13. № 2. С. 99–122. DOI: 10.17759/mda.2023130206

*Каранэ Мария Магдалина Сергеевна, аспирант кафедры «Математическая кибернетика», Московский авиационный институт (национальный исследовательский университет) (ФГБОУ ВО МАИ (НИУ)), г. Москва, Российская Федерация, ORCID: https://orcid.org/0000-0002-8019-8613, e-mail: mm_karane@mail.ru

1. ВВЕДЕНИЕ

При решении многих прикладных проблем теории управления возникают задачи синтеза систем управления, которые описываются нелинейными обыкновенными дифференциальными уравнениями с неопределенно заданными начальными условиями [1–2]. Подобные задачи рассматривались во многих работах [1–6] и решались с помощью различных методов. Одним из возможных подходов к решению задачи является описание и последующее управление всей совокупностью траекторий, исходящих из заданного множества возможных начальных состояний, называемой пучком траекторий.

В статье формулируется стратегия для решения задачи поиска оптимального управления пучками траекторий с неполной обратной связью, где управление зависит от времени и от части координат вектора состояния, информация о значениях которых предполагается известной.

В силу сложности решения нелинейных прикладных задач оптимального управления [7; 8], как правило, применяются численные методы, которые можно разделить на прямые и косвенные. Основная идея прямого подхода заключается в том, что нелинейная динамическая задача оптимального управления сводится к задаче нелинейного математического программирования [4; 6]. Косвенный подход основан на применении необходимых условий оптимальности (принципе максимума Понтрягина) или достаточных условий оптимальности (принципе оптимальности Беллмана или принципе расширения Кротова–Гурмана) [5].

В статье предлагается прямой подход к решению поставленной задачи с параметризацией закона управления. Для этого используется псевдоспектральный метод [7–11], в котором управление аппроксимируется глобальным многочленом, а коллокация выполняется в специально выбранных точках (точках коллокации). Глобальный многочлен подбирает к точкам коллокации сглаживающую функцию. В этом методе фиксируется набор точек коллокации, а степень используемого многочлена может изменяться. В качестве базисных функций обычно рассматриваются полиномы Чебышева или Лагранжа, а управление представляется в виде ряда по базисным функциям с неизвестными коэффициентами. В силу особых свойств полиномов Чебышева [11], в качестве ограничений на коэффициенты используются ограничения, наложенные на управление. Решение представляется в виде значений в N + 1-й точках коллокации, которые однозначно определяют полином, аппроксимирующий решение. Наличие естественных ограничений на коэффициенты, следующих из постановки задачи, является преимуществом псевдоспектрального метода по сравнению со спектральным [12], где никакой априорной информации о коэффициентах нет.

В численных методах поиска оптимального управления при прямом подходе для оптимизации критерия качества управления требуется использовать методы оптимизации, которые могут быть как классическими, так и основанными на эвристических процедурах. Для этой цели успешно применяются метаэвристические алгоритмы [6; 13–23], а также их подгруппа – мультиагентные алгоритмы [17–20], принципиальной

особенностью которых является использование агентов. Если рассматривать целевую функцию f(x), то агент – это набор параметров $x = (x_1, ..., x_n)^T$. Агенты имеют возможность обмениваться информацией с целью достижения наилучшего результата. Мультиагентные алгоритмы имеют достаточно широкое применение и используются во многих отраслях науки. В статье используются два мультиагентных метода: гибридный мультиагентный алгоритм интерполяционного поиска [17; 18] и метод, основанный на использовании линейных регуляторов управления движением агентов [17-19]. Особенность гибридного мультиагентного алгоритма интерполяционного поиска заключается в построении интерполяционных кривых: Безье, Катмулла-Рома и В-сплайна, и в различной аппроксимации набора точек. Построение интерполяционных кривых дает возможность подстроиться под локально изменяющуюся структуру поверхности уровня целевой функции, а их применение позволяет перейти к задачам одномерной параметрической минимизации с целью нахождения новых агентов по информации о текущем положении агентов, образующих популяцию. Также в алгоритме используется метод роевого интеллекта для минимизации вдоль интерполяционной кривой [21; 22] и самоорганизующийся миграционный алгоритм (Self-Organizing Migrating Algorithm, SOMA) [23]. Особенность метода, основанного на использовании линейных регуляторов управления движением агентов, состроит в том, что движение агентов описывается системой дифференциальных уравнений. Для разных групп агентов используются различные типы критериев и типы оптимального или субоптимального управления с полной обратной связью.

В данной работе на базе этих мультиагентных алгоритмов и идей псевдоспектрального метода сформирован алгоритм поиска оптимального программного управления в условиях неопределенности задания начального состояния, как частного случая управления с неполной обратной связью.

Решены модельные примеры [24], в которых система управления описывается нелинейной системой дифференциальных уравнений, а ограниченное управление входит линейно. Помимо этого решена задача гашения вращательного движения спутника при помощи установленных на нем двигателей [25].

В следующем разделе описана постановка задачи управления пучками траекторий. В третьем разделе излагается стратегия поиска решения поставленной задачи, приведены общие идеи и способы ее решения. В четвертом разделе сформирован пошаговый алгоритм поиска оптимального управления пучками траекторий. Модельные примеры и прикладная задача о стабилизации спутника решены в пятом и шестом разделах соответственно.

2. ПОСТАНОВКА ЗАДАЧИ

Поведение нелинейной непрерывной детерминированной модели объекта управления описывается уравнением

$$\dot{x}(t) = f(t, x(t), u(t)),$$
 (1)

101

где x – вектор состояния системы, $x \in \mathbb{R}^n$; t – непрерывное время, $t \in T = [t_0; t_f]$, моменты t_0 начала процесса и t_f окончания процесса управления считаются заданными; u – вектор управления, $u = (u_1, ..., u_q)^T \in U \subseteq \mathbb{R}^q$; U – множество допустимых значений управления, представляющее собой прямое произведение отрезков $[a_j, b_j]$, $j = \overline{1, q}$; $f(t, x, u) = (f_1(t, x, u), ..., f_n(t, x, u))^T$ – непрерывно дифференцируемая вектор-функция.

Начальные условия заданы компактным множеством Ω положительной меры с кусочно-гладкой границей:

$$x(t_0) = x_0 \in \Omega \subset \mathbb{R}^n, \tag{2}$$

где множество Ω характеризует неопределенность задания начальных условий.

Предполагается, что при управлении используется информация о времени t и о части координат вектора состояния x (без ограничения общности считается, что это первые m координат). Таким образом, о компонентах вектора $x^1 \in R^m$ известна текущая информация, а о компонентах вектора $x^2 \in R^{n-m}$ она отсутствует, при этом $x = (x^1, x^2) \in R^n$, $m \in \{\overline{0, n}\}$. Если m = 0, информация о векторе состояния отсутствует, а если m = n, то имеется полная информация о векторе состояния.

Управление, применяемое в каждый момент времени t, имеет вид управления с неполной обратной связью: $u(t) = u(t, x^{1}(t))$. Если m = 0, система управления будет разомкнутой по состоянию, а соответствующее управление u(t) – программным, а если m = n, то система управления будет замкнутой с полной обратной связью, определяемой управлением u(t, x). Множество допустимых управлений U_m образуют такие функции $u(t, x^{1})$, что $\forall t \in T$ управление $u(t) = u(t, x^{1}(t)) \in U$ кусочно-непрерывно, а функция $f(t, x, u(t, x^{1}))$ такова, что решение уравнения (1) с начальным условием (2) существует и единственно. Множество допустимых процессов $D(t_0, x_0)$ – множество пар $d = (x(\cdot), u(\cdot))$, включающих траекторию $x(\cdot)$ и кусочно-непрерывное допустимое управление $u(\cdot)$, где $\forall t \in T$ $u(t) \in U(t)$, удовлетворяющих уравнению состояния (1) и начальному условию (2).

На множестве $D(t_0, x_0)$ определен функционал качества управления отдельной траекторией:

$$I(x_0, d) = \int_{t_0}^{t_f} f^0(t, x(t), u(t)) dt + F(x(t_f)), \qquad (3)$$

где $f^{0}(t, x, u)$, F(x) – заданные непрерывные функции.

Каждому допустимому управлению $u(t, x^1) \in U_m$ и множеству Ω поставим в соответствие пучок (ансамбль) траекторий уравнения (1) [1]:

$$X(t, u(t, x^{1})) = \bigcup \{x(t, u(t, x^{1}(t)), x(t_{0})) \mid x(t_{0}) \in \Omega\}, \ t \in T,$$
(4)

т.е. объединение решений уравнения (1) по всем возможным начальным состояниям (2). Пучок траекторий порождается множеством Ω и управлением $u(t, x^1) \in U_m$.

Качество управления пучком траекторий предлагается оценивать величиной функционала

$$J[\boldsymbol{u}(t, \boldsymbol{x}^{1})] = \int_{\Omega} I(\boldsymbol{x}_{0}, d) d\boldsymbol{x}_{0} / \operatorname{mes} \Omega$$
⁽⁵⁾

ИЛИ

$$J[u(t, x^{1})] = \max_{x_{0} \in \Omega} I(x_{0}, d),$$
(6)

где mes Ω – мера множества Ω .

Требуется найти управление $u^*(t, x^1) \in U_m$, минимизирующее функционал (5) или (6):

$$J[\boldsymbol{u}^{*}(t, x^{1})] = \min_{\boldsymbol{u}(t, x^{1}) \in U_{m}} J[\boldsymbol{u}(t, x^{1})].$$
⁽⁷⁾

Искомое управление называется оптимальным в среднем, когда минимизируется значение функционала (5), т.е. среднее значение функционала (3) на множестве начальных состояний Ω , или гарантирующим (минимаксным), когда минимизируется функционала (6).

3. СТРАТЕГИЯ ПОИСКА РЕШЕНИЯ

Для решения поставленной задачи определим способ вычисления критерия оптимальности управления пучком траекторий, а также способ параметризации закона управления. Эти процедуры можно разделить на два этапа.

I этап. Приближенное вычисление значения функционала (5) и (6).

Пусть множество начальных состояний Ω представляет собой параллелепипед, определенный прямым произведением отрезков $[\alpha_i; \beta_i]$, $i = \overline{1, n}$, т.е. $\Omega = [\alpha_1; \beta_1] \times ... \times [\alpha_n; \beta_n]$. Все отрезки $[\alpha_i; \beta_i]$, $i = \overline{1, n}$, с помощью шага Δx_i разбиваются на S_i отрезков, а параллелепипед Ω делится на $S = S_1 \cdots S_n$ элементарных подмножеств Ω_k , $k = \overline{1, S}$. В каждом элементарном подмножестве Ω_k задается начальное состояние x_0^k – центр параллелепипеда Ω_k .

Для каждого начального состояния x_0^k , $k = \overline{1,S}$, из множества начальных состояний Ω следует проинтегрировать систему дифференциальных уравнений (1) с управлением $(\boldsymbol{u}_1(t, x^1), ..., \boldsymbol{u}_q(t, x^1))^T$ одним из численных методов, например методом Рунге–Кутты 4-го порядка. В результате получаются пары d^k , $k = \overline{1,S}$, образованные управлением $u^k(t) = (u^{1,k}(t) = \boldsymbol{u}_1(t, x^{1,k}(t)), ..., u^{q,k}(t) = \boldsymbol{u}_q(t, x^{1,k}(t)))^T$ и соответствующими траекториями $x^k(t)$. Следовательно, можно найти приближенное значение функционалов (5) или (6) соответственно:

$$J\left[\boldsymbol{u}(t,x^{1})\right] \cong \frac{1}{S} \sum_{k=1}^{S} I\left(x_{0}^{k},d^{k}\right)$$

$$\tag{8}$$

или

$$J\left[\boldsymbol{u}(t,x^{1})\right] \cong \max_{x_{0}^{k},k=1,\dots,S} I\left(x_{0}^{k},d^{k}\right).$$

$$\tag{9}$$

II этап. Параметризация закона управления.

Процедуру поиска решения задачи (7) сведем к проблеме поиска наилучших значений параметров, которые задают структуру управления. Управление ищется

в параметрическом виде, который определяется числом коэффициентов в разложении управления по системе базисных функций и их значениями. В качестве базисных функций предлагается использовать полиномы Чебышева. Применение разложений по многочленам Чебышева широко используется в псевдоспектральных методах [7–11].

Предполагается, что известна оценка множества возможных состояний, которая представляется прямым произведением $[x_1, x_1] \times \cdots \times [x_n, x_n]$, где $x_i, x_i -$ нижняя и верхняя границы по каждой координате соответственно, определяемые физическим смыслом решаемой задачи.

Закон управления будем искать в виде функции насыщения sat, гарантирующей выполнение параллелепипедных ограничений на управление [6]:

$$\boldsymbol{u}_{j}(t, x^{1}) = \operatorname{sat}\left\{\boldsymbol{g}_{j}\left(t, x_{1}, ..., x_{m}\right)\right\}, \ j = \overline{1, q} \ . \tag{9}$$

Здесь

$$\operatorname{sat} v_{j}(t) = \begin{cases} v_{j}(t), & a_{j} < v_{j}(t) < b_{j}, \\ a_{j}, & v_{j}(t) \le a_{j}, \\ b_{j}, & v_{j}(t) \ge b_{j}, \end{cases}$$
(10)

где $v_j(t) = g_j(t, x_1(t), ..., x_m(t))$, а аргументы $g_j(t, x_1, ..., x_m)$ функции насыщения предлагается истему виде линейной комбинации базисных функций. Используем систему многочленов Чебышева первого рода $T_m(x)$, ортогональных с весом $\rho(x) = 1/\sqrt{1-x^2}$ на отрезке [-1,1]:

$$T_0(x) = 1, \ T_1(x) = x, \dots, T_{m+1}(x) = 2xT_m(x) - T_{m-1}(x), \ m \ge 1.$$
(11)

При этом

$$\int_{-1}^{1} \frac{T_m(x)T_n(x)}{\sqrt{1-x^2}} dx = \begin{cases} 0, & m \neq n, \\ \pi, & m = n = 0, \\ \frac{\pi}{2}, & m = n \neq 0. \end{cases}$$

Тогда аргументы функции насыщения находятся по формуле

$$g_{j}(t, x_{1}, ..., x_{m}) = \sum_{i_{0}=0}^{N_{0}^{j}} \sum_{i_{1}=0}^{N_{1}^{j}} \dots \sum_{i_{m}=0}^{N_{m}^{j}} u_{i_{0}i_{1}\dots i_{m}}^{j} T_{i_{0}}(t) T_{i_{1}}(x_{1}) \cdots T_{i_{m}}(x_{m})$$
(12)

Здесь $u_{i_0i_1...i_m}^j$ – неизвестные коэффициенты; $N_0^j, N_1^j, ..., N_m^j$ – масштабы усечения по времени и координатам вектора состояния, используемым в управлении. Решение ищется как расширенная матрица-столбец $U_N = (U_N^1, ..., U_N^q)^T$ вида

$$U_{N}^{j} = \begin{bmatrix} N_{0}^{j} \\ N_{1}^{j} \\ \vdots \\ N_{m}^{j} \end{bmatrix} \begin{bmatrix} u_{00\dots0}^{j} \\ u_{00\dots1}^{j} \\ \vdots \\ u_{00\dots(N_{m}-1)}^{j} \end{bmatrix} \begin{bmatrix} u_{10\dots0}^{j} \\ u_{10\dots1}^{j} \\ \vdots \\ u_{10\dots(N_{m}-1)}^{j} \end{bmatrix} \cdots \begin{bmatrix} u_{(N_{0}-1)0\dots0}^{j} \\ u_{(N_{0}-1)0\dots1}^{j} \\ \vdots \\ u_{(N_{0}-1)0\dots(N_{m}-1)}^{j} \end{bmatrix} \cdots \begin{bmatrix} u_{(N_{0}-1)(N_{1}-1)\dots0}^{j} \\ u_{(N_{0}-1)(N_{1}-1)\dots1}^{j} \\ \vdots \\ u_{(N_{0}-1)(N_{1}-1)\dots(N_{m}-1)}^{j} \end{bmatrix}^{1}$$
(13)

104

с ограничениями

$$0 \le N_i^j \le N_{\max}^j, \quad N_i^j - \text{ целые; } j = \overline{1, q} ,$$

$$a_j \le u_{i_0, i_1, \dots, i_m}^j \le b_j ,$$
 (14)

где значение N_{\max}^{j} задается исходя из возможных требований к точности решения и лимиту вычислительных затрат, a_{j} и b_{j} – параметры ограничений на управление, известные из постановки задачи.

Таким образом, ищется решение на множестве векторов, полученных путем конкатенации векторов, состоящих из коэффициентов разложения для управлений $u_1(t, x^1), \ldots, u_q(t, x^1)$ и векторов масштабов усечения по времени и координатам вектора состояния.

Так как полиномы Чебышева рассматриваются на отрезке [-1,1], то требуется преобразовать отрезки $[t_0, t_f], [\underline{x_1}, x_1], ..., [\underline{x_n}, \overline{x_n}]$ к стандартному отрезку [-1,1], применив линейные преобразования:

$$t = \frac{t_f - t_0}{2} \tau + \frac{t_f + t_0}{2}, \quad dt = \frac{t_f - t_0}{2} d\tau, \quad \tau \in [-1, 1],$$
$$x_i = \frac{x_i + x_i}{2} + \frac{\overline{x_i} - x_i}{2} \tilde{x}_i; \quad \tilde{x}_i \in [-1, 1], i = \overline{1, n}.$$

где $x_i, \overline{x_i}$ – нижняя и верхняя границы по каждой координате соответственно.

В результате уравнение (1) и функционал (3) перепишем в следующей форме:

$$\dot{x}(\tau) = \frac{t_f - t_0}{2} f(\tau, x(\tau), u(\tau)),$$

$$I(x_0, d) = \frac{t_f - t_0}{2} \int_{-1}^{1} f^0(\tau, x(\tau), u(\tau)) d\tau + F(x(1)).$$
(15)

Рассмотрим частный случай, когда система разомкнута по состоянию (m = 0). Следовательно, будем искать программное управление u(t). Тогда для этого случая требуется переписать рассмотренный способ параметризации. Используя многочлены Чебышева, в качестве узлов интерполяции выберем положения экстремумов многочлена Чебыше<u>ва</u> степени N^{j} и крайние точки отрезка интерполяции: $t_{k} = \cos(\pi k / N^{j}), k = 0, N^{j}$. На отрезке [-1,1] они располагаются так: $1 = t_{0} > t_{1} > ... > t_{N^{j}-1} > t_{N^{j}} = -1$ и называются точками коллокации Чебышева–Гаусса–Лобатто (CGL (Chebyshev–Gauss–Lobatto)).

Поскольку многочл<u>ены</u> Чебышева можно записать в форме $T_m(t) = \cos(m \arccos t), m = 0, N^j$, то их значения в узлах найдем в виде

$$T_m(t_k) = \cos\left(\pi km / N^j\right), \ k = 0, N^j; \ j = \overline{1, q},$$

В качестве базисной системы $\{\varphi_i(t)\}_{i=0}^{N^j}$ (рис. 1) предлагается использовать [11]:

$$\varphi_i(t) = \frac{(-1)^{i+1}(1-t^2)T'_{N^j}(t)}{(N^j)^2 c_i(t-t_i)}, i = \overline{0, N^j}; \quad c_i = \begin{cases} 2, i = 0, i = N^j, \\ 1, i = \overline{1, N^j - 1}. \end{cases}$$

Псевдоспектральный метод поиска оптимального управления пучками траекторий... Моделирование и анализ данных. 2023. Том 13. № 2.

Тогда закон управления запишем в виде

$$u_{j}^{N^{j}}(t) = \sum_{i=0}^{N^{j}} u_{i}^{j} \varphi_{i}(t), j = \overline{1, q}, \qquad (16)$$

где u_i^j – неизвестные величины.

При этом в узлах выполняются соотношения $\varphi_i(t_k) = \delta_{ik}$, $u_j^{N'}(t_k) = u_k^j$, где δ_{ik} – символ Кронекера. На коэффициенты разложен<u>ия накладываются</u> ограничения, следующие из постановки задачи: $a_j \le u_k^j \le b_j$, k = 0, N^j ; $j = \overline{1, q}$.

В задаче требуется найти координаты расширенного вектора

$$(N^{1},...,N^{q} | u_{0}^{1},...,u_{N^{1}}^{1},...,u_{0}^{q},...,u_{N^{q}}^{q})^{\mathrm{T}},$$
(17)

содержащего блок целочисленных переменных $N = (N^1, ..., N^q)^T$ и блок действительных переменных $C = (u_0^1, ..., u_{N^1}^1, ..., u_0^q,, u_{N^q}^q)^T$, на которые накладываются ограничения вида (14).

Таким образом, предлагается искать значения координат блочных расширенных векторов (17), содержащих блок целочисленных переменных и блок действительных переменных, на которые наложены интервальные ограничения.

Рис. 1. Графики системы базисных функций для многочлена Чебышева 8-й степени

4. ВЫЧИСЛИТЕЛЬНЫЙ АЛГОРИТМ

Описанный способ параметризации управления приводит к необходимости решения смешанной целочисленно-непрерывной задачи условной оптимизации:

$$f(N^*, C^*) = \min_{N \in N, C \in C} f(N, C),$$
(18)

где $N = \{N \mid N^j \in \{\overline{0, N_{\max}}\}, j = \overline{1, q}\}, C = \{C \mid u_i^j \in [a_j, b_j], a_j \le b_j, j = \overline{1, q}, i = \overline{0, N^j}\}.$

Для ее решения используются гибридные метаэвристические алгоритмы, относящиеся к группе мультиагентных. Они хорошо зарекомендовали себя при решении задач оптимизации типовых тестовых функций и параметров технических систем [19], а также в задачах поиска оптимального программного управления [18; 20].

Поскольку вектор подбираемых параметров содержит как целочисленные, так и непрерывные координаты, то формируется алгоритм, реализующий два вида поиска: процедуру целочисленного линейного поиска для целочисленных переменных и процедуру поиска по непрерывным переменным, основанную на мультиагентных алгоритмах условной оптимизации. В связи с этим, предлагается последовательная схема решения, включающая описанные ниже шаги.

Шаг 1. Привести исходную постановку задачи к требуемому виду: отрезок $[t_0, t_f]$ привести к стандартному отрезку [-1,1] по формуле

$$t = \frac{t_f - t_0}{2}\tau + \frac{t_f + t_0}{2}, \ dt = \frac{t_f - t_0}{2}d\tau, \ \tau \in [-1, 1].$$

Тогда модель объекта управления будет иметь вид

$$\dot{x}(t) = \frac{\tau_f - \tau_0}{2} f(t, x(t), u(t)), \ x(-1) = x_0,$$

$$I(d) = \frac{\tau_f - \tau_0}{2} \int_{-1}^{1} f^0(t, x(t), u(t)) dt + F(x(1), \tau_f)$$

Задать параметры выбранного мультиагентного алгоритма и максимальную степень многочлена Чебышева $N_{\rm max}$. Положить счетчик числа итерации it = 0.

Шаг 2. Генерирование начального приближения.

Для целочисленных переменных:

$$N^{j} = \text{INT}[\text{rand}[0,1] (N_{\text{max}} + 1)], 0 \le N^{j} \le N_{\text{max}}, j = \overline{1,q}$$
,

где rand [0,1] – число, генерируемое согласно равномерному закону распределения, INT[.] – операция выделения целой части числа.

Для непрерывных переменных требуется сгенерировать начальную популяцию, состоящую из *NP* агентов на интервале $[a_j, b_j]$. Каждый агент соответствует коэффициентам $u_{i_j}^j$ в разложении (16):

$$u_i^j = a_j + \operatorname{rand}[0,1](b_j - a_j), j = \overline{1,q},$$

Шаг 3. Реализация процедуры поиска на множестве N по целочисленным переменным при известных значениях координат вектора C. Применяется процедура целочисленного линейного поиска для решения непрерывных задач оптимизации. При этом значения координат вектора C в блочном векторе (N, C) считаются фиксированными.

Шаг 3.1. Упорядочить координаты N, случайным образом. Положить New = false – индикатор наличия улучшения, j = 1.

Шаг 3.2. Пусть на *j* -м месте стоит *i* -я переменная. «Просканировать» множество решений вида $z = N + ke_i$, $k = 0, \pm 1, \pm 2, ..., 0 \le N \le N_{max}$, где e_i – единичный орт, составленный из всех нулей и одной единицы на *i* -м месте; знак неравенства понимается покоординатно.

Шаг 3.3. Если среди полученных в результате сканирования решений имеется наилучшее, удовлетворяющее условию f(z, C) < f(N, C), то заменить N на z и положить New = true.

Действия, описанные на Шаге 3.2 и 3.3, назовем проходом (положим, что число проходов не превосходит максимального числа итераций *ITER*).

Шаг 4. Реализация процедуры поиска на множестве C по непрерывным переменным при фиксированных координатах вектора N.

Шаг 4.1. Разбить отрезок $[t_0, t_f]$: $t_0 = 1, t_1, ..., t_{N-1}, t_N^j = -1$, где $t_k = \cos \frac{\pi k}{N^j}$, $k = 0, 1, ..., N^j$, где N^j – количество промежуточных точек отрезка известно из Шага 3.

Шаг 4.2. По сгенерированным коэффициентам (см. Шаг 2) сформировать управление в виде функции насыщения sat, гарантирующей выполнение ограничений на управление:

$$u_{j}^{N^{j}}(t) = \operatorname{sat}\left\{g_{j}(t)\right\}, \ j \in \overline{1, q},$$
$$g_{j}(t) = \sum_{i=0}^{N^{j}} u_{i}^{j} \varphi_{i}(t), \ u_{j}^{N^{j}}(t_{k}) = u_{k}^{j}.$$

В качестве базисной системы функций $\{\varphi_i(t)\}_{i=0}^{N^j}$ рассматриваются многочлены Чебышева. Базисная система имеет следующие свойства:

внутри интервала:

$$\varphi_i(t) = \frac{(-1)^{i+1}(1-t^2)T'_{N^j}(t)}{(N^j)^2 c_i(t-t_i)}, i = 0, 1, ..., N^j; \quad c_i = \begin{cases} 2, i = 0, i = N^j, \\ 1, i = 1, ..., N^j - 1, \end{cases}$$

где $T_0(x) = 1$, $T_1(x) = x$, $T_{m+1}(x) = 2xT_m(x) - T_{m-1}(x)$, $m \ge 1$; - в узлах:

$$\varphi_i(t_k) = \delta_{ik} = \begin{cases} 1, i = k, \\ 0, i \neq k. \end{cases}$$

Шаг 4.3. Проинтегрировать *NP* систем дифференциальных уравнений (см. Шаг 1) с управлениями $u^1(t), \ldots, u^{NP}(t)$, например, методом Рунге-Кутты 4-го порядка для каждого начального состояния x_0^k из множества Ω . Для каждого агента и для каждого начального состояния получить соответствующие траектории $(x_1^{1,x_0^k}(\cdot),\ldots,x_1^{NP,x_0^k}(\cdot)),\ldots,(x_n^{1,x_0^k}(\cdot))$ и вычислить значения функционала $I^{1,x_0},\ldots,I^{NP,x_0^k}$. Найти среднее значение критерия качества управления поумов (9)).

Шаг 4.4. Выполнить очередную итерацию выбранного метода минимизации функционала (8) (или (9)). Получить новые положения агентов 1['],..., *NP*['] (векторы значений коэффициентов разложения по системе базисных функций).

Шаг 4.5. Проверка критериев окончания поиска.

Если *it* < *ITER* и достигнуто максимально число проходов, завершить процедуру целочисленного линейного поиска и фиксировать найденные значения координат вектора *N*. Перейти к шагу 4.2.

Если *it < ITER* и не достигнуто максимально число проходов, то перейти к шагу 3.1.

Если $it \ge ITER$, завершить процедуру поиска значений непрерывных переменных и перейти к Шагу 5.

Шаг 5. Завершение поиска. На последней итерации выбирается лучший агент, т.е. вектор C с координатами u_i^j , а также соответствующие ему управление и пучок траекторий, а также значение J функционала (8) (или (9)) принимаются за приближенное решение задачи с найденными коэффициентами u_i^j , $i \in 0, N^j$ и значениями координат вектора N.

5. МОДЕЛЬНЫЕ ПРИМЕРЫ

Пример 1. Исходная постановка задачи [24], приведенная в табл. 1, приводится к виду, удобному для применения описанного псевдоспектрального алгоритма с использованием полиномов Чебышева. Формула преобразования времени $(t_0 = 0, t_f = 1)$:

$$t = \frac{t_f - t_0}{2}\tau + \frac{t_f + t_0}{2} = \frac{1}{2}\tau + \frac{1}{2}, \quad dt = \frac{t_f - t_0}{2}d\tau = \frac{1}{2}d\tau, \quad \tau \in [-1;1].$$

Тогда отрезок времени будет иметь вид $t \in [-1; 1]$, а система дифференциальных уравнений перепишется в форме

$$\begin{cases} \dot{x}_1 = \frac{1}{2} (x_2 + \sin x_1 + u), \\ \dot{x}_2 = \frac{1}{2} (x_1 \cos x_2 u). \end{cases}$$

Таблица 1

Постановка задачи

Размерность вектора состояния	<i>n</i> = 2
Временной интервал	$t \in [0;1]$
Ограничения на управление	$-1 \le u \le 1$
Система дифференциальных уравнений	$\begin{cases} \dot{x}_1 = x_2 + \sin x_1 + u \\ \dot{x}_2 = x_1 \cos x_2 u \end{cases}$
Функционал (3)	$I(x_0, d) = x_2(1)$

Значения параметров гибридного алгоритма интерполяционного поиска: NP = 30, $I_{\text{max}} = 100$, $M_1 = 5$, $M_2 = 2$, PRT = 0,9, nstep = 10, $b_2 = 20$, и метода, основанного на применении линейных регуляторов управления движением агентов: NP = 13, NMAX = 100, $P_{\text{max}} = 20$, $k_s = 100$, $k_l = 5$, h = 0,0001. Множество начальных состояний $\Omega = [-0,05;0,05] \times [-0,05;0,05]$, $S_1 = S_2 = 5$.

В табл. 2 приведено численное решение задачи двумя мультиагентными алгоритмами и подсчитано среднее значение критерия, а в табл. 3 – значение критерия для гарантирующего управления. Исходя из полученных результатов, можно сделать вывод о том, что оба алгоритма успешно справились с поставленной задачей, но гибридный мультиагентный алгоритм интерполяционного поиска уступает мультиагентному алгоритму, основанному на применении линейных регуляторов управления движением агентов, в смысле значения функционала, однако при этом было затрачено больше ресурсов на вычисления.

Таблица 2

Результаты (оптимальное в среднем управление)	Гибридный мультиа- гентный алгоритм ин- терполяционного поиска	Мультиагентный алгоритм, основан ный на применении линейных регул торов управления движением агенто	
Количество узлов	<i>N</i> = 10	N = 12	
Отрезки значений координат $x_1(1), x_2(1)$	[0,2596;0,6102], [-0,1761; -0,0911]	[0,2603;0,6109], [-0,1767; -0,0917]	
Вектор коэффициентов в разложении (16)	-1,2; -1,2; -1,2; -1,2; -1,2; 1,2; 1,2; 1,2; 1,2; 1,2;	-1,2; -1,2; -1,2; -1,2; -1,2; 1,2; 1,2; 1,2; 1,2; 1,2; 1,2; 1,2	
Значение функционала (8)	-0,133572	-0,134232	
Затраченное время процессора	106 секунд	152 секунд	

Пример 1. Результаты решения

Таблица 3

Пример 1. Результаты решения

Результаты (гарантирую- щее управление)	Гибридный мультиа- гентный алгоритм ин- терполяционного поиска	Мультиагентный алгоритм, основан- ный на применении линейных регуля- торов управления движением агентов
Количество узлов	<i>N</i> = 10	<i>N</i> = 12
Отрезки значений коор- динат $x_1(1), x_2(1)$	[0,2919;0,6426], [-0,1748; -0,0915]	[0,2603;0,6109], [-0,17617 -0,0917]
Вектор коэффициентов в разложении (16)	-1,2; -1,2; -1,2; -1,2; -0,993; 1,2; 1,2; 1,2; 1,2; 1,2;	-1,2; -1,2; -1,2; -1,2; -1,2; -1,2; 1,2; 1,2; 1,2; 1,2; 1,2; 1,2; 1,2
Значение функционала (9)	-0,091459	-0,091749
Затраченное время процессора	120 секунд	285 секунд

На рис. 2 изображены найденные пучки траекторий и управление для случая поиска среднего значения функционала (3) мультиагентным алгоритмом, основанным на применении линейных регуляторов управления движением агентов.

Рис. 2. Графики пучков траекторий и управления. Пример 1

Результаты, приведенные в таблице 2 и 3, сравнивались с известным решением, полученным при известном фиксированном начальном состоянии [24]: координаты вектора состояния в конце времени функционирования системы $x_1(1) = 0,440804; x_2(1) = -0,13593$, значение функционала (3): -0,13599. Также в [18] получены результаты решения рассматриваемой задачи в условиях неопределенности начального состояния системы. Минимизировалось среднее значение функционала (3) и искалось оптимальное в среднем управление гибридным мультиагентным алгоритмом интерполяционного поиска, с использованием спектрального разложения по системе нестационарных косинусоид. Получены следующие результаты: $x_1(1) \in [0,2667;0,6172]; x_2(1) \in [-0,176;-0,0914]$, среднее значение функционала (3): -0,1337.

Пример 2. Исходная постановка задачи [24], приведенная в табл. 4, приводится к виду, удобному для применения описанного псевдоспектрального алгоритма с использованием полиномов Чебышева. Формула преобразования времени $(t_0 = 0, t_f = 1.6)$:

$$t = \frac{t_f - t_0}{2}\tau + \frac{t_f + t_0}{2} = \frac{4}{5}\tau + \frac{4}{5}, \quad dt = \frac{t_f - t_0}{2}d\tau = \frac{4}{5}d\tau, \quad \tau \in [-1;1].$$

Таблица 4

Размерность вектора состояния	<i>n</i> = 2
Временной интервал	$t \in [0; 1, 6]$
Ограничения на управление	$-2 \le u \le 1$

Постановка задачи

Псевдоспектральный метод поиска оптимального управления пучками траекторий... Моделирование и анализ данных, 2023. Том 13. № 2.

Система дифференциальных уравнений	$\begin{cases} \dot{x}_1 = \frac{1}{\cos x_1 + 2} + 3\sin x_2 + u\\ \dot{x}_2 = x_1 + x_2 + u \end{cases}$
Функционал (3)	$I(x_0, d) = -x_1(1, 6) + \frac{1}{2}x_2(1, 6)$

Тогда будет справедливо, что $t \in [-1;1]$, а система дифференциальных уравнений перепишется в виде

$$\begin{cases} \dot{x}_1 = \frac{4}{5} \left(\frac{1}{\cos x_1 + 2} + 3\sin x_2 + u \right), \\ \dot{x}_2 = \frac{4}{5} \left(x_1 + x_2 + u \right). \end{cases}$$

Значения параметров гибридного алгоритма интерполяционного поиска: NP = 30, $I_{\text{max}} = 100$, $M_1 = 5$, $M_2 = 2$, PRT = 0,9, nstep = 10, $b_2 = 20$, метода, основанного на применении линейных регуляторов управления движением агентов: NP = 13, NMAX = 100, $P_{\text{max}} = 10$, $k_s = 100$, $k_l = 5$, h = 0,0001. Множество начальных состояний $\Omega = [0,95;1,05] \times [-0,05;0,05]$, $S_1 = S_2 = 5$.

Таблица 5

Пример 2. Результаты решения

Результаты (оптимальное в среднем управление)	Гибридный мультиагент- ный алгоритм интерполя- ционного поиска	Мультиагентный алгоритм, основанный на применении линейных регуляторов управ- ления движением агентов
Количество узлов	<i>N</i> = 13	<i>N</i> = 12
Отрезки значений координат $x_1(1), x_2(1)$	[3,4351;3,5566], [12,4475;13,3215]	[3,3571;3,4392], [12,2323;13,1006]
Вектор коэффициентов в разложении (16)	-2,2; -2,2; -2,2; -2,2; 0,49; 1,1; 1,1; 1,1; 1,1; 1,1; 1,1; 1,1; 1,1	-2,2; -2,2; -2,2; -2,2; 1,1; 1,1; 1,1; 1,1; 1,1; 1,1; 1,1; 1,1
Значение функционала (8)	-2,961588	-2,946605
Затраченное время процессора	564 секунд	187 секунд

Таблица 6

Пример 2. Результаты решения

Результаты (гарантирующее управление)	Гибридный мультиагент- ный алгоритм интерполя- ционного поиска	Мультиагентный алгоритм, основанный на применении линейных регуляторов управ- ления движением агентов
Количество узлов	<i>N</i> = 12	<i>N</i> = 10
Отрезки значений координат	[3,4963;3,6461],	[3,5253;3,6854],
$x_1(1), x_2(1)$	[12,5654;13,4434]	[12,6057;13,4832]

Результаты (гарантирующее управление)	Гибридный мультиагент- ный алгоритм интерполя- ционного поиска	Мультиагентный алгоритм, основанный на применении линейных регуляторов управ- ления движением агентов
Вектор коэффициентов	-2,2; -2,2; -2,2; -1,06; 1,1;	-2,2; -2,2; -2,2; 1,1; 1,1; 1,1;
в разложении (16)	1,1; 1,1; 1,1; 1,1; 1,1; 1,1; 1,1	1,1; 1,1; 1,1; 1,1
Значение функционала (9)	-2,786368	-2,777532
Затраченное время процессора	168 секунд	25 секунд

Решение задачи при поиске оптимального в среднем и гарантирующего управлений представлено в табл. 5 и 6 соответственно. Указано найденное наилучшее количество точек коллокации и значения коэффициентов в управлении. Вычисления проводятся с использованием двух мультиагентных алгоритмов. Исходя из полученных результатов, видно, что при использовании гибридного мультиагентного алгоритма интерполяционного поиска значение функционала было минимальным, по сравнению с другим мультиагентным алгоритмом, но при этом было затрачено большее время процессора. На рис. 3 приведены графики пучков траекторий и график управления. При анализе численных и графических результатов, можно сказать, что оба алгоритма успешно справились с поставленной задачей.

Рис. 3. Графики пучков траекторий и управления. Пример 2

Результат сравнивался с решением, полученным при известном фиксированном начальном состоянии, которое приводится в [24]: координаты вектора состояния

в конце времени функционирования системы $x_1(1,6) = 3,46114$; $x_2(1,6) = 12,884$, значение функционала (3): -2,98086. В [18] получены результаты решения рассматриваемой задачи в условиях неопределенности задания начального состояния системы. Минимизировалось среднее значение функционала и искалось оптимальное в среднем управление гибридным мультиагентным алгоритмом интерполяционного поиска, с использованием спектрального разложения по системе нестационарных косинусоид. Были получены следующие результаты: $x_1(1) \in [3,3645; 3,4519]; x_2(1) \in [12,2765; 13,1466], среднее значение функциона$ ла (3): -2,96042.

Исходя из приведенных данных для двух модельных примеров, можно заключить, что предложенный подход с использованием полиномов Чебышева показал результаты чуть лучше, чем метод, основанный на спектральном разложении по системе нестационарных косинусоид [18].

6. ПРИКЛАДНАЯ ЗАДАЧА

6.1. Постановка задачи

Рассматривается задача гашения вращательного движения спутника с помощью установленных на нем двигателей [25]. Движение твердого тела относительно центра инерции после перехода к безразмерным переменным, имеет вид:

$$\dot{p}(t) = u_1/6$$
,
 $\dot{q}(t) = u_2 - 0, 2rp$, (19)
 $\dot{r}(t) = 0, 2(u_3 + pq)$,

где p, q, r – проекции угловой скорости на главные центральные оси инерции, а u_1, u_2, u_3 – управления, которые характеризуют тяги двигателей, расположенных на спутнике. Ограничение на управление: $U = [-200, 200] \times [-200, 200] \times [-200, 200]$. Начальное состояние системы $t_0 = 0$ задано множеством начальных состояний: $\Omega = [23.85; 24.15] \times [15.85; 16.15] \times [15.85; 16.15]$. В момент окончания функционирования системы $t_1 = 1$ должны выполняться условия: $p(t_1) = q(t_1) = r(t_1) = 0$.

Функционал качества управления характеризует затраты топлива при работе реактивных двигателей и степень выполнения конечных условий:

$$I_{1}(x_{0},d) = \int_{t_{0}}^{t_{0}} \left[\left| u_{1}(t) \right| + \left| u_{2}(t) \right| + \left| u_{3}(t) \right| \right] dt + R_{1} p(t_{1})^{2} + R_{2} q(t_{1})^{2} + R_{3} r(t_{1})^{2}, \quad (20)$$

где R_i – параметры штрафа. Для удобства численной реализации преобразуем задачу Больца (20) к задаче Майера с помощью введения дополнительного дифференциального уравнения:

$$\dot{s}(t) = |u_1(t)| + |u_2(t)| + |u_3(t)|, \quad s(t_0) = 0,$$

$$I_1(x_0, d) = s(t_1) + R_1 p(t_1)^2 + R_2 q(t_1)^2 + R_3 r(t_1)^2.$$
(21)

Требуется найти оптимальное в среднем программное управление и соответствующий ему пучок траекторий, минимизирующие среднее значение функционала (20) на множестве начальных условий Ω.

6.2. Решение задачи

В связи с тем, что поставленная задача будет решена описанным выше алгоритмом поиска оптимального программного управления пучками траекторий на основе псевдоспектрального метода, требуется привести исходную постановку задачи к виду, требуемому на Шаге 1. Формула преобразования времени ($t_0 = 0$, $t_f = 1$):

$$t = \frac{t_f - t_0}{2}\tau + \frac{t_f + t_0}{2} = \frac{1}{2}\tau + \frac{1}{2}, \quad dt = \frac{t_f - t_0}{2}d\tau = \frac{1}{2}d\tau, \quad \tau \in [-1, 1],$$

тогда модель объекта управления перепишется следующим образом:

$$\dot{p}(t) = u_1/12 ,$$

$$\dot{q}(t) = 0, 5(u_2 - 0, 2rp),$$

$$\dot{r}(t) = 0, 1(u_3 + pq),$$

а начальный и конечный момент функционирования системы: $t_0 = -1$, $t_1 = 1$.

Зададим параметры гибридного мультиагентного алгоритма интерполяционного поиска: NP = 40, $I_{\text{max}} = 100$, $M_1 = 8$, $M_2 = 1$, PRTVector = 10, nstep = 5, $b_2 = 20$, и метода, основанного на применении линейных регуляторов управления движением агентов: NP = 101 NMAX = 50, $P_{\text{max}} = 10$, $k_s = 0.1$, $k_l = 5$, h = 0.0001. Множество начальных состояний $\Omega = [23.85; 24.15] \times [15.85; 16.15] \times [15.85; 16.15]$, $S_1 = S_2 = S_3 = 2$.

Таблица 7

Алгоритм	Отрезки значений координат (<i>p</i> (<i>t</i> ₁), <i>q</i> (<i>t</i> ₁), <i>r</i> (<i>t</i> ₁))	Количество коэффициентов в разложении для $u_1(t)$, $u_2(t)$, $u_3(t)$	Векторы коэффициентов разложения для $u_1(t)$, $u_2(t)$, $u_3(t)$	Значение функционала Ј
Гибридный муль- тиагентный алго- ритм интерполяци- онного поиска	[-0,0723;0,0777], [-0,156;0,1659], [-0,4662;0,1472]	$L_0^{u_1} = 2$ $L_0^{u_2} = 3$ $L_0^{u_3} = 2$	(-159,59; -128,38), (17,69; 33,17; -54,73), (0,007; 0,0005)	181,300499
Мультиагентный алгоритм, основан- ный на применении линейных регуля- торов управления движением агентов	[-0,1378;0,0122], [-0,3415; -0,0472], [-0,5527;0,1354]	$L_0^{u_1} = 2$ $L_0^{u_2} = 4$ $L_0^{u_3} = 2$	(-149,4638; -139,2899), (18,3174; 50,594; -10,4979; -11,2656), (-0,01; -0,01)	183,712969

Решение прикладной задачи

В табл. 7 приведены численные результаты, полученные двумя мультиагентными алгоритмами. Наилучшие результаты (минимальное значение функционала) получены

при использовании гибридного мультиагентного алгоритма интерполяционного поиска. Для этого случая изображены графики пучков траекторий на рис. 4, а графики управления на рис. 5. Также найден вектор коэффициентов в разложении (16) для управлений $u_1(t)$, $u_2(t)$, $u_3(t)$.

В ходе решения задачи были получены данные о вычислительных затратах (времени решения задачи). Использовался процессор 11th Gen Intel(R) Core(TM) i7–1165G7 с частотой 2.80GHz. При решении гибридным мультиагентным алгоритмом интерполяционного поиска на выполнение задачи было затрачено 686 секунд, а методом, основанном на применении линейных регуляторов управления движением агентов, 895 секунд.

Численный результат сравнивался с решением, полученным с помощью мультиагентного метода, имитирующего поведение стаи криля [21], с параметрами: NP = 40, $I_{\rm max} = 300$, $\mu = 0,05$, $N_{\rm max} = 0,005$, $V_f = 0,001$, $D_{\rm max} = 0,0005$. Результат решения задачи этим алгоритмом при заданных параметрах приведен в табл. 8.

Рис. 4. Задача о стабилизации спутника. Графики пучков траекторий

Рис. 5. Задача о стабилизации спутника. Программное управление

Таблица 8

Алгоритм	Отрезки значе- ний координат (<i>p</i> (<i>t</i> ₁), <i>q</i> (<i>t</i> ₁), <i>r</i> (<i>t</i> ₁))	Количество коэф- фициентов в разло- жении для $u_1(t), u_2(t), u_3(t)$	Коэффициенты разложения для $u_1(t)$, $u_2(t)$, $u_3(t)$	Значение функционала Ј
Метод, имитирующий поведение стаи криля	[0,025;0,175], [-0,2545;0,0499], [-0,5998;0,0779]	$L_0^{u_1} = 2$ $L_0^{u_2} = 3$ $L_0^{u_3} = 2$	(-157,4442; -129,3557), (48,7378; 23,3138; -30,414), (0,0006; 0,0028)	180,346631

Решение прикладной задачи

7. ЗАКЛЮЧЕНИЕ

Использован прямой подход для решения задачи оптимального программного управления пучками траекторий. Сформирован алгоритм поиска оптимального управления непрерывными детерминированными системами в условиях неопределенности, который базируется на применении псевдоспектрального алгоритма с использованием полиномов Чебышева и мультиагентных алгоритмов условной оптимизации. В частности, в статье рассмотрены два мультиагентных алгоритма: гибридный мультиагентный алгоритм интерполяционного поиска и метод, основанный на использовании линейных регуляторов управления движением агентов. На основе этих алгоритмов разработано программное обеспечение, с использованием которого продемонстрирована эффективность данного подхода на модельных примерах, а также на прикладной задаче о стабилизации спутника. Результаты прикладной задачи сравнивались с решением, полученным мультиагентным методом, имитирующим поведение стаи криля, а результаты модельных примеров - со спектральным мультиагентным алгоритмом, использующим разложение по системе нестационарных косинусоид. Разработанный алгоритм может быть применен в различных областях, таких как гидравлика, электротехника, а также областях, связанных с поиском управления авиационно-космическими системами, например в задаче о планирующем спуске летательного аппарата, задаче о перехвате, задаче об управлении солнечным парусом и др.

Литература

- 1. *Куржанский А.Б.* Управление и наблюдение в условиях неопределенности. М.: Изд-во Наука, 1977. 392 с.
- 2. Овсянников Д.А., Мизинцева М.А., Балабанов М.Ю., Дуркин А.П., Едаменко Н.С., Котина Е.Д., Овсянников А.Д. Оптимизация динамики пучков траекторий с использованием гладких и негладких функционалов // Ч.1. Вестн. СПбГУ. Сер.10. Прикладная математика. Информатика. Процессы управления. 2020. Т. 16. № 1. С. 73–84.
- 3. *Henrion D., Korda M.* Convex Computation of the Region of Attraction of Polynomial Control Systems // European Control Conf, (ECC). Zurich, 2013. P. 676–681.
- 4. *Deng H., Zhang W., Shen C.* Stability Analysis of Optimal Trajectory for Nonlinear Optimal Control Problems // Journal of Mathematics. 2020. P.1–5. doi:10.1155/2020/1392705.

- 5. Бортаковский А.С. Оптимальное и субоптимальное управления пучками траекторий детерминированных систем автоматного типа // Изв. РАН. ТиСУ. 2016. № 1. С. 5–26.
- 6. Пантелеев А.В. Метаэвристические алгоритмы оптимизации законов управления динамическими системами. М.: Изд-во Факториал, 2020. 564 с.
- 7. Афанасьев В.Н., Фролова Н.А. Дифференциальная игра в задаче управления нелинейным объектом с ограничениями на управляющие воздействия // Труды Института системного анализа РАН. 2020. Т. 70. № 3. С. 56–64. doi:10.14357/20790279200307
- Liu M., Zhao J., Hoogendoorn S., Wang M. An optimal control approach of integrating traffic signals and cooperative vehicle trajectories at intersections // Transportmetrica B: Transport Dynamics. 2021. No. 10. P.1–17. doi:10.1080/21680566.2021.1991505.
- 9. *Rybakov K.A.* Applying Spectral Form of Mathematical Description for Representation of Iterated Stochastic Integrals // Differencialnie Uravnenia i Protsesy Upravlenia. 2019. No. 4. P. 1–31.
- 10. Косников Ю.Н. Особенности применения радиальных базисных функций в геометрическом моделировании трехмерных объектов визуализации // Модели, системы, сети в экономике, технике, природе и обществе. 2020. № 4.
- Garg D., Patterson M., Hager W., Rao A., Benson D. An overview of three pseudospectral methods for the numerical solution of optimal control problems // Advances in the Astronautical Sciences. 2017. V.135, P. 1–17.
- 12. *Tang X., Hu Z.L.* New results on pseudospectral methods for optimal control // Automatica. Vol.65. 2016, P.160–163. doi:10.1016/j.automatica.2015.11.035
- Mehrpouya M.A., Peng H. A robust pseudospectral method for numerical solution of nonlinear optimal control problems // International Journal of Computer Mathematics. 2021, no.98(6), P.1146–1165, doi: 10.1080/00207160.2020.1807521
- Hager W.W., Liu J., Mohapatra S., Rao A.V., Wang X. -S. A pseudospectral method for optimal control based on collocation at the Gauss points // IEEE Conference on Decision and Control (CDC). 2018, P. 2490–2495, doi: 10.1109/CDC.2018.8618929.
- Li Y., Chen W., Yang L. Linear Pseudospectral Method with Chebyshev Collocation for Optimal Control Problems with Unspecified Terminal Time // Aerospace 2022, no. 9. doi:10.3390/ aerospace9080458
- 16. Gendreau M., Potvin J-Y. Handbook of Metaheuristic. N.Y.: Springer, 2019. 604 p.
- 17. *Panteleev A., Karane M.* Application of Multi-agent Optimization Methods Based on the Use of Linear Regulators and Interpolation Search for a Single Class of Optimal Deterministic Control Systems // Applied Mathematics and Computational Mechanics for Smart Applications. Singapore: Springer, 2021. P. 217–244
- Panteleev A., Karane M. Multi-agent Optimization Algorithms for a Single Class of Optimal Deterministic Control Systems // Advances in Theory and Practice of Computational Mechanics. Singapore: Springer, 2020. pp. 271–291
- Karane M., Panteleev A. Benchmark Analysis of Novel Multi-agent Optimization Algorithm Using Linear Regulators for Agents Motion Control // IOP Conf. Series: Materials Science and Engineering. Alushta, 2020. doi:10.1088/1757-899X/927/1/012023
- Wang D., Tan D., Liu L. Particle swarm optimization algorithm: an overview // Soft Computing, 2018, 22(2), P. 387–408. doi:10.1007/s00500-016-2474-6.
- 21. Wang G., Gandomi A., Alavi A., Gong D. A comprehensive review of krill herd algorithm: variants, hybrids and applications // Artificial Intelligence Review. 2019, no. 51, P. 119–148. doi:10.1007/s10462-017-9559-1.
- 22. *Davendra D., Zelinka I.* Self-Organizing Migrating Algorithm. Methodology and Implementation. Studies in Computational Intelligence. Springer 2016. 626 p.

- 23. Финкельштейн Е.А. Вычислительные технологии аппроксимации множества достижимости управляемой системы: Автореф. дисс. ... канд. техн. наук. Иркутск, 2018. 19 с.
- 24. *Крылов И.А.* Численное решение задачи об оптимальной стабилизации спутника // ЖВМ и МФ. 1968. Т.8. № 1. С. 203–208.
- Karane, M.M., Panteleev, A.V. Multiagent Algorithms for Optimizing Bundles of Trajectories of Deterministic Systems with Incomplete Instant Feedback // J. Comput. Syst. Sci. Int. 61. 2022. P. 751–775. doi:10.1134/S1064230722050082

Pseudospectral Method for Finding Optimal Control of Trajectory Bundles Based on Multi-Agent Optimization Algorithms

Mariia Magdalina S. Karane*

Moscow Aviation Institute (National Research University) (MAI), Moscow, Russia ORCID: https://orcid.org/0000-0002-8019-8613 e-mail: mm_karane@mail.ru

A class of problems of optimal control of nonlinear continuous deterministic systems under conditions of uncertainty is considered. To solve the problem, a numerical algorithm for finding the optimal control is formed, in which the parameterization of the control law is used, which depends on time and a set of coordinates of the state vector available for measurement. This approach is based on the approximation of the control law by a series using a system of basis functions with unknown coefficients. The search for unknown coefficients in the expansion of the control law is implemented using multi-agent optimization methods: a hybrid multi-agent interpolation search algorithm and a multi-agent algorithm based on the use of linear controllers for controlling the movement of agents. A software has been developed and two model examples and an applied problem of stabilizing a satellite with the help of engines installed on it have been solved.

Keywords: optimal control, multi-agent optimization algorithms, trajectory bundle, Chebyshev polynomials, pseudospectral method.

For citation:

Karane M.M.S. Pseudospectral Method for Finding Optimal Control of Trajectory Bundles Based on Multi-agent Optimization Algorithms. *Modelirovanie i analiz dannykh = Modelling and Data Analysis*, 2023. Vol. 13, no. 2, pp. 99–122. DOI: 10.17759/mda.2023130206 (In Russ., abstr. in Engl.).

References

- 1. Kurzhanskii A.B. Upravlenie i nablyudenie v usloviyakh neopredelennosti [Control and observation in conditions of uncertainty]. Moscow: Publ. Nauka, 1977. 392 p.
- Ovsyannikov D.A., Mizintseva M.A., Balabanov M.Yu., Durkin A.P., Edamenko N.S., Kotina E.D., Ovsyannikov A.D. Optimizatsiya dinamiki puchkov traektorii c ispol'zovaniem gladkikh i negladkikh funktsionalov [Optimization of dynamics of bundles of trajectories using smooth and non-smooth functionals]. *Ch.1. Vestn. SPbGU. Ser.10. Prikladnaya matematika. Informatika. Protsessy upravleniya = Part 1. Bulletin of St. Petersburg State University. Series 10. Applied Mathematics. Computer science. Control processes*, 2020. Vol.16. no.1. P. 73–84. (In Russ.)
- Henrion D., Korda M. Convex Computation of the Region of Attraction of Polynomial Control Systems // European Control Conf, (ECC). Zurich, 2013. P. 676–681.

**Mariia Magdalina S. Karane*, Postgraduate Student, Moscow Aviation Institute (National Research University) (MAI), Moscow, Russia, ORCID: https://orcid.org/0000-0002-8019-8613, e-mail: mm_karane@mail.ru

- Deng H., Zhang W., Shen C. Stability Analysis of Optimal Trajectory for Nonlinear Optimal Control Problems // Journal of Mathematics. 2020. P.1–5. doi:10.1155/2020/1392705.
- Bortakovskii A.S. Optimal'noe i suboptimal'noe upravleniya puchkami traektorii determinirovannykh sistem avtomatnogo tipa [Optimal and suboptimal control of bundles of trajectories of deterministic systems of automatic type]. *Izv. RAN TiSU = Proceedings of the RAS TiSU*. 2016. No. 1. P. 5–26.
- Panteleev A.V. Metaevristicheskie algoritmy optimizatsii zakonov upravleniya dinamicheskimi sistemami [Metaheuristic algorithms for optimizing control laws for dynamic systems]. Moscow: Publ. Faktorial, 2020. 564 p.
- Afanas'ev V. N., Frolova N.A. Differentsial'naya igra v zadache upravleniya nelineinym ob"ektom s ogranicheniyami na upravlyayushchie vozdeistviya [Differential game in the control problem for a non-linear object with restrictions on control actions]. *Trudy Instituta sistemnogo analiza RAN = Proceedings of the Institute of System Analysis of the RAS*. 2020. V. 70. no 3. P. 56–64. doi:10.14357/20790279200307
- Liu M., Zhao J., Hoogendoorn S., Wang M. An optimal control approach of integrating traffic signals and cooperative vehicle trajectories at intersections // Transportmetrica B: Transport Dynamics. 2021. No. 10. P. 1–17. doi:10.1080/21680566.2021.1991505.
- 9. Rybakov K.A. Applying Spectral Form of Mathematical Description for Representation of Iterated Stochastic Integrals // Differencialnie Uravnenia i Protsesy Upravlenia. 2019. No. 4. P. 1–31.
- 10. Kosnikov Yu.N. Osobennosti primeneniya radial'nykh bazisnykh funktsii v geometricheskom modelirovanii trekhmernykh ob"ektov vizualizatsii [Features of application of radial basis functions in geometric modeling of three-dimensional visualization objects]. *Modeli, sistemy, seti v ekonomike, tekhnike, prirode i obshchestve = Models, systems, networks in economics, technology, nature and society* 2020. № 4.
- Garg D., Patterson M., Hager W., Rao A., Benson D. An overview of three pseudospectral methods for the numerical solution of optimal control problems // Advances in the Astronautical Sciences. 2017. V.135, P. 1–17.
- Tang X., Hu Z.L. New results on pseudospectral methods for optimal control // Automatica. Vol.65. 2016, P.160–163. doi:10.1016/j.automatica.2015.11.035
- Mehrpouya M.A., Peng H. A robust pseudospectral method for numerical solution of nonlinear optimal control problems // International Journal of Computer Mathematics. 2021, no.98(6), P. 1146–1165, doi: 10.1080/00207160.2020.1807521
- Hager W.W., Liu J., Mohapatra S., Rao A.V., Wang X.-S. A pseudospectral method for optimal control based on collocation at the Gauss points // IEEE Conference on Decision and Control (CDC). 2018, P. 2490–2495, doi: 10.1109/CDC.2018.8618929.
- Li Y., Chen W., Yang L. Linear Pseudospectral Method with Chebyshev Collocation for Optimal Control Problems with Unspecified Terminal Time //Aerospace 2022, no. 9. doi:10.3390/aerospace9080458
- 16. Gendreau M., Potvin J-Y. Handbook of Metaheuristic. N.Y.: Springer, 2019. 604 p.
- Panteleev A., Karane M. Application of Multi-agent Optimization Methods Based on the Use of Linear Regulators and Interpolation Search for a Single Class of Optimal Deterministic Control Systems // Applied Mathematics and Computational Mechanics for Smart Applications. Singapore: Springer, 2021. P. 217–244
- Panteleev A., Karane M. Multi-agent Optimization Algorithms for a Single Class of Optimal Deterministic Control Systems // Advances in Theory and Practice of Computational Mechanics. Singapore: Springer, 2020. pp. 271–291
- Karane M., Panteleev A. Benchmark Analysis of Novel Multi-agent Optimization Algorithm Using Linear Regulators for Agents Motion Control // IOP Conf. Series: Materials Science and Engineering. Alushta, 2020. doi:10.1088/1757-899X/927/1/012023

- Wang D., Tan D., Liu L. Particle swarm optimization algorithm: an overview // Soft Computing, 2018, 22(2), P. 387–408. doi:10.1007/s00500-016-2474-6.
- Wang G., Gandomi A., Alavi A., Gong D. A comprehensive review of krill herd algorithm: variants, hybrids and applications // Artificial Intelligence Review. 2019, no. 51, P. 119–148. doi:10.1007/s10462-017-9559-1.
- 22. Davendra D., Zelinka I. Self-Organizing Migrating Algorithm. Methodology and Implementation. Studies in Computational Intelligence. Springer 2016. 626 p.
- 23. Finkel'shtein E.A. Vychislitel'nye tekhnologii approksimatsii mnozhestva dostizhimosti upravlyaemoi sistemy: Avtoref. diss. kand. tekhn. nauk. [Computational technologies for approximating the reachability set of a controlled system. PhD (Engineering) Thesis] Irkutsk, 2018. 19 p.
- 24. Krylov I.A. Chislennoe reshenie zadachi ob optimal'noi stabilizatsii sputnik [Numerical solution of the problem of optimal satellite stabilization]. *ZhVM i MF = Journal of Comp. Math. and Math. Physics*. 1968. V.8. no.1. P. 203–208. (In Russ.)
- Karane, M.M., Panteleev, A.V. Multiagent Algorithms for Optimizing Bundles of Trajectories of Deterministic Systems with Incomplete Instant Feedback // J. Comput. Syst. Sci. Int. 61. 2022. P. 751–775. doi:10.1134/S1064230722050082

Получена 17.03.2023 Принята в печать 17.04.2023 Received 17.03.2023 Accepted 17.04.2023