Портал психологических изданий PsyJournals.ru
Каталог изданий 126Рубрики 53Авторы 9739Новости 1907Ключевые слова 5095 Правила публикацииВебинарыRSS RSS


0,727 — двухлетний импакт-фактор

Моделирование и анализ данных

Издатель: Московский государственный психолого-педагогический университет

ISSN (печатная версия): 2219-3758

ISSN (online): 2311-9454

DOI: https://doi.org/10.17759/mda

Лицензия: CC BY-NC 4.0

Издается с 2011 года

Периодичность: 4 номера в год

Язык журнала: русский

Доступ к электронным архивам: открытый


Application of robust statistics in vibration time histories analysis 683

Gałka T.
Institute of Power Engineering, Warsaw, Poland


Statistical parameters of vibration data distributions provide a remarkable source of information in condition monitoring. The assumption of normality leads to comparatively simple description within the framework of classical statistics. However, due to the presence of outliers and heavy-tailed distributions, this approach is often unacceptable. In such cases, robust methods prove superior. The paper is focused on applying robust statistics in analyzing vibration data dispersion and correlation for the purpose of lifetime consumption estimation. This approach is suitable for large rotating machines operated in an industrial plant environment and characterized by significant influences of control parameters and interference. It is shown that robust meth¬ods yield results that are easier to interpret from both qualitative and quantitative viewpoints. Examples re¬ferring to large steam turbines operated by utility power plants are given; however, certain results can be generalized over a broader class of rotating machines or even diagnostic objects.

Ключевые слова: Robust statistics, vibration analysis

Рубрика: Научная жизнь

Тип: научная статья

Ссылка для цитирования

Фрагмент статьи

Vibration-based symptoms are extremely important in monitoring technical condition of virtually all types of rotating machinery, especially large and complex units, e.g. turbo-generators, large fans or compressors. This is justified by their high information content, non-intrusive nature and com­paratively well-developed data acquisition and processing procedures. The most straightforward approach consists in analyzing vibration patterns recorded at a certain moment on the basis of a purpose-developed diagnostic model. Information on the object condition is, however, also con­tained in time histories of certain vibration components. As pointed out in References, a vibra­tion component evolution type and relevant timescale (the latter varying within a broad range, from seconds to months) contain information on a fault type and thus are useful already at the qualitative diagnosis stage. More detailed analysis of vibration time histories becomes even more important when it comes to quantitative assessment and is mandatory for a prognosis.

  1. Morel J., “Vibration des Machines et Diagnostic de Leur État Mécanique”, Eyrolles, Paris, France, 1992.
  2. Orłowski Z., “Diagnostics in the Life of Steam Turbines”, WNT, Warszawa, Poland, 2001 (in Polish).
  3. Natke H. G. and Cempel C., “Model-Aided Diagnosis of Mechanical Systems”, Springer, Ber-lin-Heidelberg-New York, 1997
  4. Gałka T., “Influence of Load and Interference in Vibration-Based Diagnostics of Rotating Ma­chines”, Advances and Applications in Mechanical Engineering and Technology, Vol 3, No 1, pp 1-19, 2011.
  5. Gałka T. and Tabaszewski M., “An Application of Statistical Symptoms in Machine Condition Diagnostics”, Mechanical Systems and Signal Processing, Vol 25, No 1, pp 253-265, 2011.
  6. Maronna R. A., Martin R. D. and Yohai V. J., “Robust Statistics”, Wiley, Chichester, UK, 2006
  7. Gałka T., “Diagnostics of the steam turbine fluid-flow system condition on the basis of vibra­tion trends analysis”, Proceedings of the 7th European Conference on Turbomachinery, Athens, Greece, pp 521-530, March 2007.
  8. Gałka T., “Statistical Vibration-Based Symptoms in Rotating Machinery Diagnostics”, Diag­nostyka, Vol 2, No 46, pp 25-32, 2008.
  9. Gałka T., “Application of Energy Processor Model for Diagnostic Symptom Limit Value De­termination in Steam Turbines, Mechanical Systems and Signal Processing”, Vol 13, No 5, pp 757-764, 1999.
  10. Gałka T., “The ‘Old Man Syndrome’ in machine lifetime consumption assessment”, Proceed­ings of the CM2011/MFPT2011 Conference, Cardiff, UK,  paper No 108, June 2011.
  11. Gałka T., “Assessment of the turbine fluid-flow system condition on the basis of vibration-re­lated symptoms”, Proceedings of the 16th International Congress COMADEM 2003, Växjö University, Sweden, pp 165-173, August 2003.
  12. Upton G. and Cook I., “Understanding Statistics”, Oxford University Press, UK, 1996.
  13. Aldrich J., “Correlations Genuine and Spurious in Pearson and Yule”, Statistical Science, Vol 10, No 4, pp 364-376, 1995.
  14. Rousseeuw P. J. and Croux C., “Alternatives to Median Absolute Deviation”, Journal of the American Statistical Association, Vol 88,  pp 1273-1283, 1993.
  15. Martin R. D. and Zamar R. H., “Bias Robust Estimates of Scale”, The Annals of Statistics, Vol 21 pp 991-1017, 1993.
  16. Rodgers J. L. and Nicewander W. A., “Thirteen Ways to Look at the Correlation Coefficient”, The American Statistician, Vol 42, No 1, pp 59-66, 1988.
  17. Abdi H., “The Kendall Rank Correlation Coefficient”, in “Encyclopedia of Measurement and Statistics”, N Salkind (Ed.), Sage, USA, 2007.
  18. Scheaffer R. L. and McClave J. T., “Probability and Statistics for Engineers”, PWS-KENT Publishers, Boston, USA, 1986.
  19. Bachschmid N., Pennacchi P. and Tanzi E., “Cracked Rotors. A Survey on Static and Dynamic Behaviour Including Modelling and Diagnosis”, Springer, Berlin, Germany, 2010.
  20. Bently D. E. and Hatch C. T., “Fundamentals of Rotating Machinery Diagnostics”, Bently Pressurized Bearing Press, Minden, USA, 2002.
  21. Gałka T., “Correlation-based symptoms in rotating machines diagnostics”, Proceedings of the 21st International Congress COMADEM 2008, Praha, Czech Republic, pp 213-226, 2008.
  22. Gałka T., “Correlation Analysis in Steam Turbine Malfunction Diagnostics”, Diagnostyka, Vol 2, No 54, pp 41-50, 2010.
  23. Gałka T., “Application of the Singular Value Decomposition method in steam turbine diag­nostics”, Proceedings of the CM2010/MFPT2010 Conference, Stratford-upon-Avon, UK, paper No 107, 2010.
  24. Sethuraman J., “The Asymptotic Distribution of the Rênyi Maximal Correlation”, Florida State University Technical Report No M-835, 1990.
  25. Strickert M., Schleif F-M., Seiffert U. and Villmann T., “Derivatives of Pearson Correlation for Gradient-Based Analysis of Biomedical Data”, Revista Iberoamericana de Inteligencia Artifi­cal, Vol 12, No 37, pp 37-44, 2008.
  26. Székely G. J. and Rizzo M. L., “Brownian Distance Covariance”, The Annals of Applied Sta­tistics, Vol 3, No 4, pp 1236-1265, 2009.
  27. Tukey J. W., “Useable resistant/robust techniques of analysis”, Proceedings of the First ERDA Symposium, Los Alamos, USA, pp 11-31, 1975.


О проекте PsyJournals.ru

© 2007–2021 Портал психологических изданий PsyJournals.ru  Все права защищены

Свидетельство регистрации СМИ Эл № ФС77-66447 от 14 июля 2016 г.


Creative Commons License Репозиторий открытого доступа     Рейтинг репозиториев Webometrics