Куравский Л.С. доктор технических наук, декан факультета информационных технологий, Московский государственный психолого-педагогический университет (ФГБОУ ВО МГППУ), Москва, Россия ORCID: https://orcid.org/0000-0002-3375-8446 e-mail: l.s.kuravsky@gmail.com
Юрьев Г.А. кандидат физико-математических наук, доцент, заведующий научной лабораторией, Московский государственный психолого-педагогический университет (ФГБОУ ВО МГППУ), Москва, Россия ORCID: https://orcid.org/0000-0002-2960-6562 e-mail: g.a.yuryev@gmail.com
Златомрежев В.И. заведующий лаборатории, Государственный научно-исследовательский институт авиационных систем («ГосНИИАС»), Москва, Россия ORCID: https://orcid.org/0000-0003-1776-6881 e-mail: vizlatomr@2100.gosniias.ru
Юрьева Н.Е. кандидат технических наук, научный сотрудник, центр информационных технологий для психологических исследований факультета информационных технологий, Московский государственный психолого-педагогический университет (ФГБОУ ВО МГППУ), Москва, Россия ORCID: https://orcid.org/0000-0003-1419-876X e-mail: yurieva.ne@gmail.com
Михайлов А.Ю. инженер 1 кат, Государственный научно-исследовательский институт авиационных систем (ГосНИИАС), Москва, Россия ORCID: https://orcid.org/0000-0003-0278-1819 e-mail: aymihaylov@2100.gosniias.ru
Оценка влияния человеческого фактора на деятельность операторов сложных технических систем является важной задачей для мониторинга состояния, подготовки и диагностики персонала. Представлены обзор и взаимные сравнения подходов, которые используются для оценки влияния человеческого фактора и уже показали свою эффективность в практическом применении. Рассматриваются: моделирование структурными уравнениями (конфирматорный факторный анализ), байесовские оценки вероятностных моделей, представленные марковскими случайными процессами, многомерные статистические методы, включающие дискриминантный и кластерный анализ, а также вейвлет-преобразования.
Благодарности. Работа выполнена как часть проекта «SAFEMODE» (грант № 814961) при финансовой поддержке Министерства науки и высшего образования Российской Федерации (проект UID RFMEFI62819X0014).
Ссылка для цитирования
Литература
Baranov S.N., Kuravsky L.S., Baranov N.I. Studying infl
uence of maneuvering loads occurrences and climatic conditions of basing on
aircraft damage accumulation rate with the aid of trained structures. In: Proc.
5th International Conference on Condition Monitoring and Machinery Failure
Prevention Technologies, Edinburgh, Scotland, United Kingdom, July 2008.
Bastani V., Marcenaro L., Regazzoni C. Unsupervised
trajectory pattern classifi cation using hierarchical Dirichlet Process Mixture
hidden Markov model//2014 IEEE International Workshop on Machine Learning for
Signal Processing (MLSP)/IEEE. 2014. Pp. 1–6.
Bishop Y.M.M., Fienberg S.E., Holland P.W. Discrete
multivariate analysis: Theory and practice. (Cambridge, MA, M I T Press,
1975.)
Bollen K.A. Structural equations with latent variables.
(New York, John Wiley, 1989.)
Borg, I., Groenen, P. J. F. Modern Multidimensional
Scaling Theory and Applications. – Springer, 2005. – P.140.
Cramer H. Mathematical Methods of Statistics. Princeton:
Princeton University Press. 1999. – 575 pp.
Eerland W.J., Box S. Trajectory Clustering, Modelling and
Selection with the focus on Airspace Protection //AIAA Infotech@ Aerospace. _
AIAA, 2016. Pp. 1–14.
Enriquez M. Identifying temporally persistent fl ows in
the terminal airspace via spectral clustering // Tenth USA/Europe Air Traffi c
Management Research and Development Seminar (ATM2013)/Federal Aviation
Administration (FAA) and EUROCONTROL. Chicago, IL, USA: 2013. June 10–13.
Enriquez M., Kurcz C. A Simple and Robust Flow Detection
Algorithm Based on Spectral Clustering // International Conference on Research
in Air Transportation (ICRAT)/Federal Aviation Administration (FAA) and
EUROCONTROL. – Berkeley, CA, USA: 2012. May 22–25.
Gaffney S., Smyth P. Joint probabilistic curve clustering
and alignment//In Advances in Neural Information Processing Systems. Vol. 17.
Cambridge, MA: MIT Press, 2005. Pp. 473–480.
Gaffney S., Smyth P. Trajectory clustering with mixtures
of regression models//Proceedings of the fi fth ACM SIGKDD international
conference on Knowledge discovery and data mining. 1999. Pp. 63–72.
Gariel M., Srivastava A., Feron E. Trajectory clustering
and an application to airspace monitoring//IEEE Transactions on Intelligent
Transportation Systems. 2011. Vol. 12, no. 4. Pp. 1511–1524.
Goldstein H. Multilevel statistical models. (3rd ed.,
London, Arnold, 2003.)
Grevtsov N. Synthesis of control algorithms for aircraft
trajectories in time optimal climb and descent // Journal of Computer and
Systems Sciences International. 2008. Vol. 47, no. 1. Pp. 129–138.
Hung C., Peng W., Lee W. Clustering and aggregating clues
of trajectories for mining trajectory patterns and routes//The VLDB Journal –
The International Journal on Very Large Data Bases. 2015. Vol. 24, no. 2. Pp.
169–192.
Jöreskog K.G. Estimation and testing of simplex models.
British Journal of Mathematical and Statistical Psychology, Vol. 23,
pp.121–145, 1970.
Krasilshchikov M.N., Evdokimenkov V.N., Bazlev D.A.
Individually adapted airborne systems for monitoring the aircraft technical
condition and supporting the pilot control actions. – Moscow, MAI Publishing
House, 2011. – 440 pp. (in Russian).
Kuchar J. K., Yang L. C. A review of confl ict detection
and resolution modeling methods//IEEE Transactions on Intelligent
Transportation Systems. 2000. Vol. 1, no. 4. Pp. 179–189.
Kuravsky L.S., Artemenkov S.L., Yuriev G.A., Grigorenko
E.L. New approach to computer-based adaptive testing. – Experimental
Psychology. 2017. Vol. 10. No. 3. Pp. 33–45.
doi:10.17759/exppsy.2017100303.
Kuravsky L.S., Baranov S.N. Development of the
wavelet-based confi rmatory factor analysis for monitoring of system factors. –
In: Proc. 5th International Conference on Condition Monitoring & Machinery
Failure Prevention Technologies, Edinburgh, United Kingdom, July 2008, pp.
818–834.
Kuravsky L.S., Margolis A.A., Marmalyuk P.A., Panfi lova
A.S. , Yuriev G.A. Mathematical aspects of the adaptive simulator concept –
Psychological Science and Education. 2016. Vol. 21. No. 2. Pp. 84–95. Doi:
10.17759/pse.2016210210 (in Russian).
Kuravsky L.S., Margolis A.A., Marmalyuk P.A., Panfi lova
A.S., Yuryev G.A., Dumin P.N. A Probabilistic Model of Adaptive Training. –
Applied Mathematical Sciences, Vol. 10, 2016, no. 48, 2369–2380,
http://dx.doi.org/10.12988/ams.2016.65168.
Kuravsky L.S., Marmalyuk P.A., Yurev G.A. Diagnostics of
Professional Skills Based on Probability Distributions of Oculomotor Activity.
– RFBR Journal, No. 3 (91), 2016, pp. 72–82 (Supplement to “Information
Bulletin of RFBR” No. 24, in Russian).
Kuravsky L.S., Marmalyuk P.A., Yuryev G.A. and Dumin P.N.
A Numerical Technique for the Identifi cation of Discrete-State Continuous-Time
Markov Models – Applied Mathematical Sciences. Vol. 9, 2015, No. 8, pp.
379–391. URL: http://dx.doi.org/10.12988/ams. 2015.410882.
Kuravsky L.S., Marmalyuk P.A., Yuryev G.A., Belyaeva O.B.
and Prokopieva O.Yu. Mathematical Foundations of Flight Crew Diagnostics Based
on Videooculography Data. – Applied Mathematical Sciences, Vol. 10, 2016, no.
30, 1449–1466, http://dx.doi.org/10.12988/ams.2016.6122.
Kuravsky L.S., Marmalyuk P.A., Yuryev G.A., Dumin P.N.,
Panfi lova A.S. Probabilistic modeling of CM operator activity on the base of
the Rasch model. – In: Proc. 12th International Conference on Condition
Monitoring & Machinery Failure Prevention Technologies, Oxford, UK, June
2015.
Kuravsky L.S., Yuriev G.A. Probabilistic method of fi
ltering artefacts in adaptive testing. – Experimental Psychology, Vol.5, No. 1,
2012, pp. 119–131 (in Russian).
Kuravsky L.S., Yuryev G.A. Certifi cate of state
registration of the computer program №2018660358 Intelligent System for Flight
Analysis v1.0 (ISFA#1.0). – Application №2018617617; declared 18 July 2018;
registered 22 August 2018. – (ROSPATENT).
Kuravsky L.S., Yuryev G.A. Detecting abnormal activities
of operators of complex technical systems and their causes basing on wavelet
representations. – International Journal of Civil Engineering and Technology
(IJCIET). 10(2), 2019, pp. 724–742.
http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=10&IType=2.
Kuravsky L.S., Yuryev G.A. On the approaches to assessing
the skills of operators of complex technical systems. – In: Proc. 15th
International Conference on Condition Monitoring & Machinery Failure
Prevention Technologies, Nottingham, UK, September 2018. – 25 pp.
Kuravsky L.S., Yuriev G.A., Dumin P.N., Estimating the
infl uence of human factor on the activity of operators of complex technical
systems in civil engineering with the aid of adaptive diagnostics,
International Journal of Civil Engineering and Technology (IJCIET). 10(2),
2019, pp. 1930–1941.
http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=10&IType=02.
Kuravsky L.S., Yuryev G.A., Zlatomrezhev V.I. New
approaches for assessing the activities of operators of complex technical
systems. Eksperimental’naya psikhologiya = Experimental psychology (Russia),
2019, vol. 12, no. 4, pp. 27–49. doi:10.17759/exppsy.2019120403.
Lawley D.N., Maxwell A.E. Factor analysis as a statistical
method. (London, Butterworths, 1971, 2nd ed., 153 pp).
Laxhammar R., Falkman G. Online learning and sequential
anomaly detection in trajectories // IEEE Transactions on Pattern Analysis and
Machine Intelligence. 2014. Vol. 36, no. 6. Pp. 1158–1173.
Li Z., et al. Incremental clustering for
trajectories//Database Systems for Advanced Applications. Lecture Notes in
Computer Science. 2010. Vol. 5982. Pp. 32–46.
Liu H., Li J. Unsupervised multi-target trajectory
detection, learning and analysis in complicated environments//2012 21st
International Conference on Pattern Recognition (ICPR)/IEEE. 2012. Pp.
3716–3720.
Loehlin J.C. Latent variable models: An introduction to
factor, path, and structural analysis. (Hillsdale, NJ, Erlbaum, 1987.)
Markov models in the diagnostics and prediction problems:
Textbook./Edited by L.S. Kuravsky. – 2nd Edition, Enlarged. – Moscow: MSUPE
Edition, 2017. – 203 pp. (in Russian).
Neal P.G. Multiresolution Analysis for Adaptive Refi
nement of Multiphase Flow Computations. – University of Iowa, 2010. – 116
pp.
René Vidal, Yi Ma, Shankar Sastry. Generalized Principal
Component Analysis. – Springer-Verlag: New York, 2016.URL:
http://www.springer.com/ us/book/9780387878102
Rintoul M., Wilson A. Trajectory analysis via a geometric
feature space approach//Statistical Analysis and Data Mining: The ASA Data
Science Journal. 2015.
Trevor F. Cox, M.A.A. Cox. Multidimensional Scaling,
Second Edition. – Chapman & Hall/CRC, 2001. – P. 299.
Wei J., et al. Design and Evaluation of a Dynamic
Sectorization Algorithm for Terminal Airspace // Journal of Guidance, Control,
and Dynamics. 2014. Vol. 37, no. 5. Pp. 1539–1555.
Wilson A., Rintoul M., Valicka C. Exploratory Trajectory
Clustering with Distance Geometry // International Conference on Augmented
Cognition/Springer. 2016. Pp. 263–274.
Xiangyu Kong, Changhua Hu, Zhansheng Duan. Principal
Component Analysis Networks and Algorithms. – Springer, 2017. URL:
http://www.springer.com/us/book/9789811029134.