Портал психологических изданий PsyJournals.ru
Каталог изданий 129Рубрики 53Авторы 10012Новости 1955Ключевые слова 5095 Подать рукописьRSS RSS
Психологическая наука и образование - №3 / 2021 | Перейти к описанию
Scopus
Web of Science СС

Включен в Web of Science СС (ESCI)

РИНЦ

Включен в Science Index

Входит в Ядро РИНЦ, Russian Science Citation Index

ВАК

CrossRef

Психологическая наука и образование

Издатель: Московский государственный психолого-педагогический университет

ISSN (печатная версия): 1814-2052

ISSN (online): 2311-7273

DOI: https://doi.org/10.17759/pse

Лицензия: CC BY-NC 4.0

Издается с 1996 года

Периодичность: 6 выпусков в год

Доступ к электронным архивам: открытый

 

Факторы, влияющие на поведенческое намерение использовать электронное обучение при получении высшего образования в условиях пандемии Covid-19: модель UTAUT2 353

|

Раман А.
доцент, Университет Утара Малайзия
ORCID: https://orcid.org/0000-0001-5351-8944
e-mail: arumugam@uum.edu.my

Таннималаи Р.
кандидат педагогических наук, сотрудник по вопросам образования, Министерство образования
ORCID: https://orcid.org/0000-0001-8758-4202
e-mail: raamani64@gmail.com

Аннотация

Цель данного исследования — оценить поведенческие намерения студентов высших учебных заведений использовать электронное обучение во время пандемии Covid-19. Модель UTAUT2 для изучения использования технологий во время этой пандемии в образовательных учреждениях применяется сегодня в малом числе исследований. В нашем исследовании была проведена выборка «снежный ком»; исследуемая группа состояла из студентов высших учебных заведений (n = 159), которые использовали платформы электронного обучения во время продолжающейся пандемии. Данные были собраны с помощью анкеты на основе адаптированной модели UTAUT2. Для статистического анализа использовалось моделирование структурных уравнений методом частичных наименьших квадратов (PLS-SEM). Исследование показало, что ожидаемые результаты, ожидаемые усилия, благоприятные условия, гедоническая мотивация и материальные затраты не оказали никакого влияния на поведенческое намерение в использовании электронного обучения. Было выявлено, что значительное влияние оказывают социальное влияние и привычка, причем привычка является самым сильным предиктором поведенческого намерения. Результаты этого исследования помогут высшим учебным заведениям в эффективном внедрении электронного обучения в академической среде и зададут направление для будущих исследований.

Ключевые слова: поведенческое намерение, COVID-19, электронное обучение, UTAUT2, высшее образование

Рубрика: Психология развития

DOI: https://doi.org/10.17759/pse.2021260305

Благодарности. Авторы благодарны всем студентам Университета Утара Малайзия, принявшим участие в исследовании.

Ссылка для цитирования

Подкаст
Литература
  1. Afshan S., Sharif A. Acceptance of mobile banking framework in Pakistan. Telematics and Informatics, 2016. Vol. 33, no. 2, pp. 370—387. DOI: 10.1016/j. tele.2015.09.005.
  2. Ain N., Kaur K., Waheed M. The influence of learning value on learning management system use: An extension of UTAUT2. Information Development, 2016. Vol. 32, no. 5, pp. 11306—1321.
  3. Almaiah M.A., Al-Khasawneh A., Althunibat A. Exploring the critical challenges and factors influencing the E-learning system usage during COVID-19 pandemic. Education and Information Technologies, 2020. DOI:10.1007/s10639-020-10219-y
  4. Ameri A., Khajouei R., Ameri A., Jahani Y. Acceptance of a mobile-based educational application(LabSafety) by pharmacy students: An application of the UTAUT2 model. Education and Information Technologies, 2020. Vol. 25, pp. 419—435.
  5. An L., Han Y., Tong L. Study on the Factors of Online Shopping Intention for Fresh Agricultural Products Based on Utaut2. Proceedings of the 2nd Information Technology and Mechatronics Engineering Conference (ITOEC 2016), 2016. DOI: 10.2991/itoec-16.2016.57
  6. Arumugam T. Covid19: Education sector grapple with technology, virtual, online classrooms [Electronic resource]. The New Straits Times, 19 April, 2020. URL: https://www.nst.com.my/news/nation/2020/04/585687/ covid19-education-sector-grapple-technology-virtual- online-classrooms (Accessed on 15.02.2021).
  7. Bates A.W. (Tony). Technology, e-learning and distance education. Psychology Press, 2005. 260 p.
  8. Biavardi N. Being an Italian Medical Student during the Covid-19 Outbreak. International Journal of Medical Students, 2020. Vol. 8, no. 1, pp. 49—50. DOI: 10.5195/ ijms.2020.489.
  9. Chayomchai A., Phonsiri W., Junjit A. Boongapim R., Suwannapusit U. Factors affecting acceptance and use of online technology in Thai people during COVID-19 quarantine time. Management Science Letters, 2020. Vol.10, no. 13, pp. 3009—3016.
  10. Cidral W.A., Oliveira T., Di Felice M., Aparicio M. E-learning success determinants: Brazilian empirical study. Computers &   Education,   2018.   Vol.   122, pp. 273—290.
  11. Crawford J., Butler-Henderson K., Rudolph J., Glowatz M. COVID-19: 20 Countries’ Higher Education Intra-Period Digital Pedagogy Responses. Journal of Applied Teaching and Learning, 2020. Vol. 3, no.1. DOI: 10.37074/jalt.2020.3.1.7.
  12. Duarte P., Raposo M. A PLS model to study brand preference: An application to the mobile phone market. In V. Esposito, Vinzi W.W., Chin J., Henseler, H. Wang (eds. Handbook of Partial Least Squares. Springer Berlin Heidelberg, 2010, pp. 449—485.
  13. Education: From Disruption to Recovery [Electronic resource]. UNESCO, 2020. URL: https://en.unesco.org/ covid19/educationresponse (Accessed on 15.02.2021).
  14. Education Malaysia Global Services [Electronic resource]. Educationmalaysia.gov.my, 2020. URL: https://educationmalaysia. gov. my/coronavirus/ (Accessed on 15.02.2021).
  15. El-Masri M., Tarhini A. Factors affecting the adoption of e-learning systems in Qatar and USA: Extending the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2). Educational Technology Research and Development, 2017. Vol. 65, no. 3, pp. 743—763.
  16. Fadzil F. A study on factors affecting the behavioural intention to use mobile apps in Malaysia, 2017. DOI: 10.2139/ssrn.3090753
  17. Fornell C., Larcker D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 1981. Vol. 18, no. 1, pp. 39—50.
  18. Galvis A. Supporting Decision-Making Processes on Blended Learning in Higher Education: Literature and Good Practices Review. International Journal of Educational Technology in Higher Education, 2018. Vol. 15, no. 1. DOI: 10.1186/s41239-018-0106-1.
  19. Ghozali I., Latan H. Partial least squares: Concept, technic and application using SmartPLS 3.0 for empirical research. Semarang: Badan Penerbit Universitas Diponegoro, 2015.
  20. Giannikas C. Facebook in Tertiary Education: The Impact of Social Media in e-Learning. Journal of University Teaching   and   Learning   Practice, 2020. Vol 17, no. 3.
  21. Green D. What is quality in higher education? Concepts, policy and practice. In Green D. (eds.). What is quality in higher education? Buckingham: Society for Research into Higher Education & Open University Press, 1994, pp. 3—20.
  22. Hair J.F., Anderson R.E., Babin B.J., Black W.C. Multivariate data analysis: A global perspective, 2010. Vol. 7.
  23. Hair J.F., Hult G.T.M., Ringle C.M., Sarstedt M. A primer on partial least squares structural equation modelling (PLS-SEM) (2nd ed.), Sage, 2017. 384 p.
  24. Houlden S., Veletsianos G. Coronavirus Pushes Universities to Switch to Online Classes — But are They Ready [Electronic resource]. The Conversation, 2020. URL: https://theconversation.com/coronaviruspushes- universities-to-switch-to-online-classes-but-arethey- ready-132728 (Accessed on 15.02.2021).
  25. Jakkaew P., Hemrungrote S. The use of UTAUT2 model for understanding student perceptions using Google Classroom: A case study of introduction to information technology course. In 2017 International Conference on Digital Arts, Media and Technology (ICDAMT), IEEE, 2017, pp. 205—209. DOI: 10.1109/ ICDAMT.2017.7904962
  26. Jing H., Fangkun L., Ziwei T., Jindong C., Jingping Z., Xiaoping W. Renrong W. Care for The Psychological Status of Frontline Medical Staff Fighting Against COVID-19 [Electronic resource], 2020. URL: https://academic.oup.com/cid/advance-article-pdf (Accessed on 15.02.2021).
  27. Kang M., Liew B.Y.T., Lim H., Jang J., Lee S. Investigating the Determinants of Mobile Learning Acceptance in Korea Using UTAUT2. In Emerging Issues in Smart Learning. Springer, Berlin, Heidelberg, 2015, pp. 209—216.
  28. Khan A.A., Niazi S., Saif S.K. Universities unprepared for switch to remote learning. University World News: The Global Window on Higher Education, 26 March, 2020.
  29. Koenig-Lewis N., Marquet M., Palmer A., Zhao A.L. Enjoyment and social influence: Predicting mobile payment adoption. The Service Industries Journal, 2015. Vol. 35, no. 10, pp. 537—554.
  30. Leung M., Sharma   Y.   Online   classes   try   to fill education gap during epidemic [Electronic resource]. University World News, 21 February, 2020. URL: https://www.universityworldnews.com/post. php?story=202002210836032 (Accessed on 15.02.2021)
  31. Moghavvemi S., Paramanathan T., Rahin N.M., Sharabati M. Students’ perceptions towards using e-learning via Facebook. Behaviour & Information Technology, 2017. Vol. 36, no. 10, pp. 1081—1100.
  32. Mohan M.M., Upadhyaya P., Pillai K.R. Intention and barriers to use MOOCs: An investigation among the postgraduate students in India. Education and Information Technologies, 2020. DOI: 10.1007/s10639- 020-10215-2
  33. Murphy M.P.A. COVID-19 and emergency eLearning: Consequences of the securitization of HE for post-pandemic pedagogy. Contemporary Security Policy, 2020, pp. 1—14. DOI: 10.1080/13523260.2020.1761749
  34. Naderifar M., Goli H., Ghaljaie F. Snowball sampling: A purposeful method of sampling in qualitative research. Strides in Development of Medical Education, 2017. Vol. 14, no. 3, pp. 1—6.
  35. Nandwani S., Khan S. Teachers’ intention towards the usage of technology: an investigation using UTAUT model. Journal of Education & Social Sciences, 2016. Vol. 4, no. 2, pp. 95—111.
  36. Nikolopoulou K., Gialamas V., Lavidas K. Acceptance of mobile phone by University students for their studies: An investigation applying UTAUT2 model. Education and Information Technologies, 2020, pp. 1—17. DOI:10.1007/s10639-020-10157-9
  37. Nunnally J.C., Bernstein I.H. Psychometric Theory McGraw-Hill New York. The role of university in the development of entrepreneurial vocations: a Spanish study, 1978.
  38. Pullen D., Swabey K., Abadooz M., Sing T.K.R. Pre- service teachers’ acceptance and use of mobile learning in Malaysia. Australian Educational Computing, 2015. Vol. 30, no. 1, pp. 1—14.
  39. Raman A., Don Y. Preservice teachers’ acceptance of learning management software: An application of the UTAUT2 model. International Education Studies, 2013. Vol. 6, no. 7, pp. 157—164.
  40. Raman A., Don Y., Khalid R., Rizuan M. Usage of learning management system (Moodle) among postgraduate students: UTAUT model. Asian Social Science, 2014. Vol. 10, no. 14, pp. 86—192.
  41. Ringle C.M., Sarstedt M., Straub D.W. A critical look at the use of PLS-SEM in MIS quarterly. MIS Quarterly, 2012. Vol. 36. no. 1, pp. iii—xiv.
  42. Romero-Rodríguez J.M., Aznar-Díaz I., Hinojo- Lucena F.J., Gómez-García G. Mobile Learning in HE: Structural Equation Model for Good Teaching Practices. IEEE Access, 2020. Vol. 8, pp. 91761— 91769. DOI: 10.1109/ACCESS.2020.2994967.
  43. Sandars J., Correia R., Dankbaar M., de Jong P., Goh P-S., Hege I., Masters   K.,   Oh   S-Y.,   Patel R., Premkuma K., Webb A., Pusic M. Twelve tips for rapidly migrating to online learning during the COVID-19 pandemic. MedEdPublish, 2020, pp. 3068. DOI:10.15694/mep.2020.000082.1
  44. Shahzad A., Golamdin A.G., Ismail N.A. Opportunity and challenges using the cloud computing in the case of Malaysian higher education institutions. The International Journal of Management Science and Information Technology, 2016. Vol. 20, pp. 1—18.
  45. Sharifi fard S., Tamam E., Hj Hassan M.S., Waheed M., Zaremohzzabieh Z. Factors affecting Malaysian   university   students’   purchase   intention in social networking sites. Cogent Business & Management, 2016. Vol. 3, no. 1, pp. 1182612. DOI:10. 1080/23311975.2016.1182612
  46. Suki N.M., Suki N.M. Determining students’ behavioural intention to use animation and storytelling applying the UTAUT model: The moderating roles of gender and experience level. The International Journal of Management Education, 2017. Vol. 15, no. 3, pp. 1528—538.
  47. Tamilmani K., Rana N.P., Dwivedi Y., Sahu G.P., Roderick S. Exploring the role of ‘price value’ for understanding consumer   adoption   of   technology: A review and meta-analysis of UTAUT2 based empirical studies. PACIS, 2018, pp. 64.
  48. Testa N., Tawfik A. Mobile, but are we better? Understanding teacher’s perception of a mobile technology integration using the unified theory of acceptance and use of technology (UTAUT) framework. Journal of Formative Design in Learning, 2017. Vol. 1, no. 2, pp. 73—83.
  49. Thongsri N., Shen L., Bao Y., Alharbi I.M. Integrating UTAUT and UGT to explain behavioural intention to use M-learning. Journal of Systems and Information Technology, 2018. Vol. 20, no. 3, pp. 278—297. DOI: 10.1108/JSIT-11-2017-0107
  50. Toquero C.M. Challenges and Opportunities for HE amid the COVID-19 Pandemic: The Philippine Context. Pedagogical Research, 2020. Vol. 5, no. 4. DOI:10.29333/pr/7947
  51. Venkatesh V., Morris M.G., Davies G.B., Davis F.D. User acceptance of information technology: Toward a unified view. MIS Quarterly, 2003. Vol. 27, no. 3, pp. 425—478.
  52. Venkatesh V., Thong J.Y., Xu X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 2012. Vol. 36, no. 1, pp. 157—178.
  53. Wang C., Cheng Z., Yue X.-G., McAleer M. Risk Management of COVID-19 by Universities in China, Journal of Risk and Financial Management, 2020. Vol. 13, no. 2, pp. 36. DOI: 10.3390/jrfm13020036
  54. Weeden K.A., Cornwell B. The small-world network of college classes: Implications for epidemic spread on a university campus. Sociological Science, 2020. Vol. 7, pp. 222—241.
  55. WHO International, 2020. WHO Director-General’s opening remarks at the media briefing on COVID-19 [Electronic resource]. URL: https://www.who.int/dg/ speeches/detail/who-director-general-s-opening- remarks-at-the-media-briefing-on-covid-19---11- march-2020. (Accessed on 15.02.2021).
  56. Wong C.H., Tan G.W.H., Tan B.I., Ooi K.B. Mobile advertising: the changing landscape of the advertising industry. Telematics and Informatics, 2015. Vol. 32, no. 4, pp. 720—734.
  57. Yeoh A. PM: Free additional 1GB Internet data daily until Dec 31 (Updated)[Electronic resource]. The Star, 2020. URL: https://www.thestar.com.my/tech/tech- news/2020/06/05/pm-free-additional-1gb-internet-data- daily-until-dec-31 (Accessed on 15. 03. 2021).
  58. Zhong R. The Coronavirus Exposes Education’s Digital Divide. The New York Times, 17 March, 2020.
  59. Zuiderwijk A., Janssen M., Dwivedi Y.K. Acceptance and use predictors of open data technologies: Drawing upon the unified theory of acceptance and use of technology. Government Information Quarterly, 2015. Vol. 32, no. 4, pp.
Статьи по теме
 
Электронная редакция психологических журналов
О проекте PsyJournals.ru

© 2007–2022 Портал психологических изданий PsyJournals.ru  Все права защищены

Свидетельство регистрации СМИ Эл № ФС77-66447 от 14 июля 2016 г.

Издатель: ФГБОУ ВО МГППУ

Creative Commons License Репозиторий открытого доступа     Рейтинг репозиториев Webometrics

Яндекс.Метрика