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A new approach to computerized adaptive testing is presented on the basis of discrete-state discrete-
time Markov processes. This approach is based on an extension of the G. Rasch model used in the Item 
Response Theory (IRT) and has decisive advantages over the adaptive IRT testing. This approach has a 
number of competitive advantages: takes into account all the observed history of performing test items that 
includes the distribution of successful and unsuccessful item solutions; incorporates time spent on perform-
ing test items; forecasts results in the future behavior of the subjects; allows for self-learning and changing 
subject abilities during a testing procedure; contains easily available model identification procedure based 
on simply accessible observation data. Markov processes and the adaptive transitions between the items re-
main hidden for the subjects who have access to the items only and do not know all the intrinsic mathemati-
cal details of a testing procedure. The developed model of adaptive testing is easily generalized for the case 
of polytomous items and multidimensional items and model structures.
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Introduction

Testing procedures are increasingly used in many contemporary applications requiring as-
sessment of people or machine’s behavior. According to conventional models of testing based on 
classical test theory for measuring the examinee’s level in a specific skill or ability as precisely 
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as possible these procedures usually should implement a big number of items that makes testing 
difficult to use. The way out is provided by computerized adaptive testing (CAT) that is greatly 
aided by the advent of modern technology and computing capabilities, emerged alongside the 
development of the Item Response Theory (IRT).

Using IRT or other CAT approaches is a method of test administration and latent con-
structs’ measurements through as few testing items and as precisely as possible [8]. These con-
structs may include: abilities, attitudes, knowledge, skills, traits and other relevant categories. 
The term “construct” will be used below instead of any of these categories.

During a computerized adaptive testing procedure an adaptive principle of item selection 
is used, according to which the difficulties of the items required to implement must be in cor-
respondence with the estimations of the subjects’ attainment levels. According to IRT, this ap-
proach yields the best differentiation of subjects by their attainment level. The other advantage is 
represented by multidimensional computerized adaptive testing (MCAT), also including shorter 
testing time and a more accurate and efficient construct estimation. MCAT joins together theo-
retical and practical advancements that capitalizes on CAT, allows for access to more constructs 
of interest without adding the burden of additional pools of items to the instrument and eventu-
ally has increased preciseness (i.e., low standard error of measurement) [9]. Despite of all these 
benefits, available CAT and MCAT methods based on IRT are quite complex to implement and 
do not accommodate a number of special parameters as time, testing history, etc.

However, the principal problem associated with the IRT-based CAT and MCAT (which 
are usually combined with maximum likelihood evaluations) is approximate equality of probabili-
ties for wrong and right solutions since a selected item difficulty must fit the subjects’ attainment 
level estimation. This fact makes testing results dependent mainly from extraneous random fac-
tors which are not related to the constructs under study, thereby devaluing obtained conclusions 
that become dummy. Therefore, development of new reasonable approaches to CAT and MCAT 
is obviously urgent poser.

Presented below is one of the approaches to overcome it. The employed model is repre-
sented by discrete-state discrete-time Markov processes (Markov chains) to produce test items 
and obtain target estimations. A feature of the given approach is detection of item difficulties 
using limit state probability distributions obtained via model matrices of transition probabili-
ties. Competitive advantages of the presented approach over the adaptive testing based on IRT 
(G. Rasch model) are as follows:

1. The estimation is not derived from local comparisons of current assessment evaluations 
and difficulties using the G. Rasch model but takes into account:

— All the observed history of performing test items, which includes the distribution of suc-
cessful and unsuccessful item solutions and their order.

— Time spent on performing test items.
2. The assessments are based on forecasting results in the future provided that testing time 

is unlimited and they do not use local (i.e. for a certain item) comparisons based on the G. Rasch 
model, which may be unstable1.

3. The number of items to be performed is substantially less.
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in probabilities. On the contrary, in case of the same condition, shift at 0.1 in the probability measure yields 0.25-logit 
shift in the ability measure. Thereby, the evaluations are quite sensitive to errors.
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4. Selected item difficulties are linked to the history of performing test items and do not 
depend directly on the current estimations of subjects’ attainment levels.

5. There is possibility for changing the difficulty of subject’s constructs during a testing 
procedure owing to tiredness and other reasons.

6. Possibility of self-learning that results in improving the characteristics of adaptive test-
ing model during its period of exploitation.

7. Easily available model identification procedure based on simple and rather accessible 
observation data.

At the same time, the presented approach and adaptive model under study may be consid-
ered as an extension of IRT, since the G. Rasch model is used as its element.

Advantages of the presented approach over the adaptive testing based on continuous-time 
Markov models are:

1. Discrete-time Markov processes are in use instead of the continuous-time ones [4—7], 
however the time spent on performing the items is taken into account via a time limit in the “trap” 
structures used in the adaptive model under study.

2. Polytomous items are allowed, with this possibility being easily implemented.

Model of Adaptive Testing

General Description of the Model

Utilized are discrete-state discrete-time Markov processes (Markov chains), with transition 
probabilities between their states being model parameters.

To describe how the probabilities of being in the given states are changed over time, Markov 
chains are applied. The typical structure presented by a scheme in Figure 1 is a finite chain with 
2n+2 states, in which transitions from state xi (i≠0, i≠n) are possible solely to the next state xi+1 or 
state xi*. Available from states x0 and xn are only states x1, x0* and xn*, respectively. Being in state 
xi* (i=0,…,n) one can go to state xi only.

States xi and xi* correspond to the ith substantial level of item difficulties. A specific set of 
items of relevant difficulty content is defined for every i. As captured in Figure 1, states with a 
larger number include the items corresponding to higher difficulties than the states with a smaller 
number, with the “highest” level of difficulties corresponding to the rightmost state.

It is assumed that each subject has one of the specified attainment levels with indices l ∈ {0, ..., z}, 
where (z + 1) is the number of these levels, with a set of items of a certain difficulty being assigned to 
each of these substantive levels and z < n. (Of note is that this particular illustration focuses on sub-
jects’ characteristics — i.e., constructs). At all attainment levels items are assigned to each substantive 
level of knowledge, abilities or skills.

Each attainment level corresponds to the certain interval of item difficulties containing more 
than one state (see Figure 1). Therefore, the number of difficulty levels is equal or greater than the 
number of attainment levels. The greater the attainment levels the higher the evaluation score.

As time functions, probabilities of being in model states are defined by the following matrix 
equation:

p(t + 1) = M(λl)p(t),
where t is discrete time; 0 ≤ t ≤ T; t, T ∈ N; T is the terminal time point; N is the set of natural num-
bers; p(t) = (p0(t), ... , pn(t), p0*(t), ... , pn*(t))T  represents probabilities of the being in model states 
in time point t; M(λl) = ǁmij(λl)ǁ is the stochastic square matrix of transition probabilities between 
the Markov chain states, in which mij(λl) is the probability of the transition from state j to state i; 
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λl = (p+
0,l, ... , p

+
n-1,l, q

+
0,l, ... , q

+
n,l, q

–
0,l, ... , q

–
n,l, r0,l ... , rn,l, r0*,l, ... , rn*,l)

T is the ordered set of the transition 
probabilities in question for subject attainment level l. Square matrices have order 2n + 2.

Classification of subjects is performed as it is presented in Section 2.
If a measurement scale is continuous, the entire range of its values should be divided into 

several intervals, each of which is interpreted as the certain substantive level of a state (i.e., con-
structs) under consideration. It is the interval of scale values that is to be selected as a result of 
the testing procedure. The greater the number of states, the more accurate this estimation. The 
more accurate the estimation, the greater the quantity of empirical data to be requested.

A testing procedure is ascertained by administering the items, the successful accomplishment 
of which requires specified constructs in the case of a certain attainment level. Difficulty of an item 
assigned to a subject corresponds to the model state occupied by him/her at the current time.

Below, the person who takes the test is referred to as a subject.

Figure 1. Discrete-time Markov chain representing a testing procedure composed of items: 
{xi}i=0,…,n and {xi*}i=0,…,n are the states,  λl = (p+

0,l, ... , p
+
n-1,l, q

+
0,l, ... , q

+
n,l, q

–
0,l, ..., q

–
n,l, r0,l ... , rn,l, r0*,l, ... , rn*,l)

T  is the set of 
transition probabilities between these states, l ∈ {0, ..., z} is an attainment level index.

Куравский Л.С., Артеменков С.Л., Юрьев Г.А., Григоренко Е.Л. Новый подход
к компьютеризированному адаптивному тестированию.
Экспериментальная психология. 2017. T. 10. № 3

Figure 2. Element of the discrete-time Markov chain represented a testing procedure: “trap”.
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Transition probabilities are calculated the following way (i = 0, … , n):
q–

i,l = p(i, l)k(t*
i , i, l)(1 – pε,l),

ri,l = (1 – p(i, l)) k(t*
i , i, l)(1 – pε,l),

ri*,l = ((1 – p(i, l)) k(t*
i , i, l) + (1 – k(t*

i ,i, l))) (1 – pε,l),
q+

i = (1 – k(t*
i , i, l)(1 – pε,l),

                 
ea(f(l) – i)

p(i, l) = 
1+ ea(f(l) – i)   

,

with p+
i,l being determined for i = 0, ... , n – 1:
p+

i,l = p(i, l)k(t*
i , i, l) (1 – pε,l),

where the last function expresses the G. Rasch dependence of probability p(i, l) for performing a 
test item successfully on attainment level l and item difficulty level i; factors k(t*

i , i, l) represent 
probabilities for non-exceeding the corresponding time limits t*

i in case of given difficulty levels  
i and attainment level l; is “error” probability for each state belonging to attainment level l; both 
function f(l) and quantity a are the G. Rasch model parameters. Small probabilities pε,l corre-
sponding to the attainment levels are necessary to support testing adaptiveness as these values 
are responsible for transitions which are carried out in case of changing current estimations of 
attainment levels. They are assumed to be distributed uniformly over corresponding transitions 
from each state and, therefore, are equal to pε,l / n. Inclusion small “error” probability in the model 
is necessary to allow formally transitions, which are unlikely for a given attainment level but 
are characteristic for some other attainment level, otherwise these transitions would be impos-
sible. This model element is useful for the subject classification. Small transition probabilities are 
averaged since their values are of the order of sampling error (despite the fact that they can be 
estimated using experimental data).

Appearance of “traps” shown in Figure 2 in the model is caused by both the necessity of tak-
ing into account time dynamics of a testing procedure (time is introduced in the model implicitly) 
and the possibility of differentiating easily two important groups of subjects: those who generate 
quickly a series of incorrect item solutions, and those who find a correct item solution for a long time 
period. This is essential for psychological diagnostics since this feature makes it possible to select 
people who are not critical with regard to results that they create. When t*

i → ∞, corresponding 
“traps” are transformed from 2-state to 1-state structures.

Transition Rules and Classification

At the initial time point of a testing procedure, a subject is assumed to be in model state x0, 
i.e. the easiest item (i.e., capturing the lowest levels of construct) is administered.

When a subject is in state xk the item assigned to him/her is selected randomly from the item 
set corresponding to the given state, with time limits t*

i applied for each pair of Markov chain 
states (xi, xi*).

Subject’s transitions between the states are determined by the following rules:
— If being in state xi a subject performs the assigned item correctly and testing time does 

not exceed the prescribed value t*
i (i.e., completes the assigned item within the specified time 

frame), he/she transits into state xi+1.
— If being in state xi a subject performs the assigned item incorrectly and testing time does 

not exceed the prescribed value t*
i, he/she remains in state xi.
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— If a subject is being in state xi and subject’s time of performing the assigned item exceeds 
the prescribed value t*

i, the subject transits into state xi*.
— If a subject is being in state xi* and subject’s time of performing the assigned item either 

exceeds the prescribed value t*
i or the subject performs the assigned item incorrectly and testing 

time does not exceed the prescribed value t*
i, he/she remains in state xi*.

— If being in state xi* a subject performs the assigned item correctly and testing time does 
not exceed the prescribed value t*

i, he/she returns into state xi.
In fact, testing time is measured in attempts of performing items.
After each of the given transitions, state rectification via classification is carried out.
Classification is implemented to determine a subject’s attainment level. Applied is the ap-

proach based on calculating the ultimate stationary distribution p∞,l = (p0
∞,l, ... , pn

∞,l, p0*
∞,l , ... , pn*

∞,l)T 
of the considered Markov chain state probabilities, which satisfies the following equation:

p∞,l = M(λl)p∞,l.

Distribution p∞,l is proved to be an eigenvector of currently selected stochastic matrix 
M(λl), which exists always and corresponds to the unit eigenvalue. In case of matrices M(λl) 
under consideration, it was also found that process p(t) is ergodic, other eigenvalues of the given 
matrix are strictly inside the unit circle in the complex plane), and p∞,l = limt→∞ pl (t). Numerical 
methods of calculating p∞,l are rather simple and can be found in reference books [1; 10].

To take into account subject trajectories between the states of the Markov chains under 
consideration and to make classification on the basis of distribution p∞,l more reliable and more 
fitting real situation, columns of matrices M(λl), where l ∈ {0, ..., z}, are corrected after each at-
tempt to perform an item, viz.: in case of the transition between the model states corresponding 
to indices j and i of this matrices (from state j to state i) element mij is replaced by 1 and other 
elements of column j are replaced by 0, with these changes remaining valid only for a testing pro-
cedure of a given subject who implements them. Matrix M(λl) in which such changes have been 
implemented is called the matrix of a passed trajectory. After every step of a testing procedure, the 
matrices of passed trajectories are calculated for each attainment level under study. Thereby, they 
keep information about the testing dynamics.

Using matrices of passed trajectories, mathematical expectation for index of ultimate pair 
of Markov chain states (xe, xe*) is calculated to forecast subject attainment level l after each at-
tempt to perform an item:

el = ∑n
i=0 i (pi

∞,l + pi*
∞,l).

Before a testing procedure, stationary level difficulty index e∞,l is to be determined for fur-
ther evaluations for each attainment level l under consideration and matrix M(λl) used at the 
initial time point of a testing procedure. To select the attainment level that fits the testing process 
under study best of all, one should calculate absolute differences between the obtained index el 
and stationary level difficulty indices e∞,l for each attainment level l under consideration (see 
Figure 1) and then select minimum emin:

             
minemin = 

l ∈ {0, ..., z}
 │el – e∞,l│.

Куравский Л.С., Артеменков С.Л., Юрьев Г.А., Григоренко Е.Л. Новый подход
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Level lmin corresponding to this emin value yields the best attainment estimation. It is obvi-
ous that the greater the subject correspondences to a given attainment level, the smaller the emin 
values, and vice versa.

If level lmin differs from the current one, state clarification is implemented with the aid of 
transition to the state which corresponds to level lmin and has an integer index that is closest 
to the appropriate mathematical expectation el. State clarification is not carried out if either 
it requires the state number decrease after the right item solution or state number increase 
after the wrong item solution or exceeding the prescribed time limit. It is also expedient to 
perform these state number shifts if only they are not greater than a certain prescribed shift 
threshold.

If some matrix of a passed trajectory repeats itself at the previous testing procedure 
steps then the state number decrease should be executed. The shift value in use can be 
changed over time.

Matrix (λl) for the given attainment level l is called consistent if the mathematical ex-
pectation referred to above falls within the set of model states corresponding to this level (see 
Figure 1).

Upon being confronted with the procedure described here, a subject is “captured” in one of 
the states that fits best his/her assessment level of construct.

As an alternative way, Bayesian estimations can be used for classification. Knowing 
the model state in which a tested subject turns out to be after solving the last item at a 
specified time point, and the probability of being in this state at the specified time for each 
attainment level, which can be calculated using the previously given matrix equation, it is 
possible to estimate posterior probabilities of attainment levels with the aid of the Bayes 
formulae:

                   P(Cl)P(S│Cl)P(Cl│S) = 
∑z

k=0 P(Ck) P(S│Ck)
 
,

where Cl is an event indicating that a subject has reached the lth attainment level (l ∈ {0, ..., z}), 
is an event indicating that a subject is located in the specified model state corresponding to 
a specified item difficulty level at the specified time, P(Cl) is a prior probability for a subject 
to have reached the lth attainment level, P(S│Cl) is the probability of being in the specified 
model state at the specified time given that a subject has the lth attainment level, and P(Cl│S) 
is the probability of reaching the lth attainment level given that a subject is located in the 
specified model state at the specified time.

The attainment level at which the highest conditional probability P(Cmax│S) = max
l
   {P(Cl│S)}

l =0, ... , z is reached yields the required classification. Probability distribution {P(Cl│S)}l =0, ... , z is ob-
tained as a result of performing the assigned item sequence, making it possible to estimate the 
reliability of the derived classification.

Model Identification

Identification of the Markov models under study is carried out using data samples consist-
ing of subjects’ testing outcomes. Each attainment level l ∈ {0, ..., z} is processed separately and 
has its own identified matrix M(λl), with a unique set of estimates of model parameters λl being 
associated with it. It enables further classification by figuring out the attainment level that has 
the best fit to a testing procedure under assessment.

Kuravsky L.S., Artemenkov S.L., Yuryev G.A., Grigorenko E.L.
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In contrast to the approach presented in the papers [4—7], identification of the model un-
der study does not require solving difficult optimization problems. If a relevant data base with ob-
servation results is available, it is reduced to the rather simple estimation of the following model 
parameters: function f(i), value a, factor k(t*

i , i, d), and time limits {t*
i } i=0, ... , n. This data base must 

make it possible to estimate frequencies of right and wrong solutions for each combination of 
subject attainment and item difficulty levels, with the prescribed time limit excesses being taken 
into account.

Parameters f(i) and a can be estimated by the maximum likelihood method using some em-
pirical data representing testing results for subjects with pre-defined attainment levels and items 
with pre-defined difficulty levels.

Factors k(t*
i , i, d) is determined directly with the aid of empirical data via the ratio of sub-

jects who exceed and not exceed the corresponding time limits t*
i in case of a given attainment 

level.
Parameters {t*

i } i=0, ... , n as well as “error” probability levels pε,l can be determined by solving 
the optimization problem with criterion C = ∑z

l=0  (el – emean,l)
2 to be minimized. Thereby, the time 

limit parameters are selected to make the expected ultimate pair of Markov chain states closer to 
a center of the model attainment level interval under consideration. Since actual value ranges for 
parameters {t*

i } i=0, ... , n are known in advance, the numerical method [3] of optimization problem 
solution can be used.

The Markov chain (see Figure 1) is identified separately for each attainment level.

Model Self-learning

When a certain attainment level is determined with the given accuracy C* and after each 
attempt to carry out an item, probabilities mij corresponding to every already implemented 
transition between the states of this level model are replaced by the slightly increased values 
mij(1 + δ), where δ << 1, with other elements of column j being reduced to the same small value 
mijδ / (2n + 1) so that the total sum of this column elements being kept equal to 1 (i.e. matrix 
M(λl) being kept stochastic); herewith the presented matrix changes are saved for all subjects 
who carry out a given testing procedure during some defined observation period.

Presented series of small corrections for matrix elements actually implement the Kohonen 
self-learning method [2].

Features of the Testing Procedure

The testing procedure is terminated when one of the following events is the case:
— Characteristic value emin becomes smaller than a certain prescribed threshold value (this 

case usually reduces the time of a testing procedure since this condition may be satisfied after a 
few items).

— Overall allotted procedure time limit is exceeded.
— The item assigned in state xn is performed successfully without reaching the prescribed 

value t*
n.

In the case of a continuous measurement scale, the approach presented can be used in 
the “microscope” mode, in which we get a rough estimate at the first stage using rather rough 
intervals. We then divide the stage interval where a subject finds himself at the end of a test-
ing procedure into several subintervals of the smaller size, then repeat the testing procedure 
using the new Markov chain fitted for more accurate estimation with these subintervals on 
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the second stage, and so on. The greater the number of these stages, the more accurate the 
estimation.

Both Markov chains and the abovementioned adaptive transitions remain hidden for the 
subjects who have access to unassigned items only and do not know all the intrinsic mathematical 
details of a testing procedure.

Polytomous Items

The model under study can be generalized for the case of polytomous items. Let us con-
sider w possible variants of estimating the performance results for an item given in state xi. In 
this case the corresponding model transition to state xi+1 that is shown in Figure 1 is replaced by 
a multivariate transition presented in Figure 3 (each state xi+1 has its own “trap”). Polytomous 
transition probabilities {p+

0 , ... , p
+
w–1} are assumed to be proportional to empirical transition fre-

quencies available via observations.

Item Difficulty

To estimate items’ difficulties the relevant “duality theory” will be developed, in which 
subject’s construct (e.g. ability) and item difficulty scales are considered as dual concepts replac-

Kuravsky L.S., Artemenkov S.L., Yuryev G.A., Grigorenko E.L.
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Figure 3. Transitions for polytomous items.
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ing each other. The Markov chain that is used to estimate attainment levels can be applied to 
calculate difficulty levels if the states in question represent attainment levels instead of substan-
tial levels in the previous model. The item to be evaluated “walks” along the Markov chain and is 
presented to the subjects which attainment level corresponds to the state where the item under 
study find itself at the given moment. All the theory features including the model structure, tran-
sition rules, model identification as well as classification are kept the same.

Multidimensional Items

When a testing procedure contains items evaluated using several measurement scales, the 
aforementioned assessment for each scale can be performed independently using the model pre-
sented in Figure 1. The results obtained may be represented with the aid of multidimensional 
structures composed of “traps” shown in Figure 2. For example, 3-D structure of this type is given 
in Figure 4 (its constituent elements are abovementioned “traps”).

Program for demonstration

The program demonstrating features of the adaptive testing model under consideration is 
available at URL http://it.mgppu.ru/files/model.zip.

Results and Conclusions

A new approach to adaptive testing is presented on the basis of discrete-state discrete-time 
Markov processes. This approach is based on an extension of the G. Rasch model used in IRT and 
has decisive advantages over the adaptive IRT testing. Its principal features are:

1. The model of adaptive testing takes into account all the observed history of performing 
test items that includes the distribution of successful and unsuccessful item solutions.

2. The developed model incorporates time spent on performing test items; it is taken into 
account via a time limit in the “trap” structures used in the adaptive model.

Куравский Л.С., Артеменков С.Л., Юрьев Г.А., Григоренко Е.Л. Новый подход
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Figure 4. 3-D structure (constituent elements are “traps”: see Figure 2)
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3. The assessments in the model are based on forecasting results in the future behavior of 
the subjects and allow for changing the value of subject’s constructs during a testing procedure 
and self-learning that results in improving the characteristics of adaptive testing model during its 
period of exploitation.

4. Discrete-time Markov chain processes used instead of the continuous-time ones facili-
tate the adaptive testing model that implies easily available identification procedure based on 
simply accessible observation data.

5. Selected item difficulties are linked to the history of performing test items and do not 
depend directly on the current estimations of subjects’ attainment levels.

6. The developed model of adaptive testing is easily generalized for the case of polytomous 
items and multidimensional model items and structures.

7. The proposed adaptive approach is made ready for CAT and MCAT implementation.
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