Портал психологических изданий PsyJournals.ru
ОТКРЫТЫЙ ДОСТУП К НАУЧНЫМ ИЗДАНИЯМ 
Каталог изданий 81Рубрики 51Авторы 7198Ключевые слова 17323 АвторамИздателямRSS RSS
ВАК РИНЦ ВИНИТИ Web of Science EBSCO Ulrichsweb DOAJ ERIH PLUS
CrossRef

Экспериментальная психология

Издатель: Московский государственный психолого-педагогический университет

ISSN (печатная версия): 2072-7593

ISSN (online): 2311-7036

DOI: http://dx.doi.org/10.17759/exppsy

Издается с 2008 года

Периодичность: 4 номера в год

Доступ к электронным архивам: открытый

 

Инвариантность зрительного восприятия 1051

Шелепин Ю.Е. , доктор медицинских наук, профессор, заведующий лабораторией физиологии зрения научного отдела физиологии сенсорных систем Института физиологии им. И.П. Павлова РАН, Санкт-Петербург, Россия
Чихман В.Н., кандидат технических наук, Старший научный сотрудник, заведующий лаб. информационных технологий и математического моделирования Института физиологии им. И.П.Павлова РАН, Санкт-Петербург, Россия, niv@pavlov.infran.ru
Вахрамеева О.А., нет данных
Пронин С.В., научный сотрудник Лаборатории физиологии зрения Института физиологии им. И. П. Павлова РАН,, Pronins@sbor.net
Фореман Н., профессор психологии школы здоровья и социальных наук Миддлесекского университета, Лондон, Великобритания, n.foreman@mdx.ac.uk
Пэсмор П., Lecturer, School of Health and Social Sciences, Middlesex University, Великобритания

Аннотация

Восприятие и мышление во многом базируется на возможности мозга находить в окружающем мире инвариантные характеристики. Цель исследования – определить диапазоны инвариантного восприятия для различных преобразований изображений объектов (угловых размеров – масштабов, углов разворота – проекций), при которых количественные характеристики процесса их восприятия остаются неизменными. Проведены психофизические измерения порогов восприятия неполных контурных изображений (методика Голлин-тест) при изменении размеров и угла наблюдения тестовых изображений. Установлен диапазон угловых размеров (от 1,0 до 50 угл. град.), в пределах которого пороги восприятия неполных контурных изображений не меняются с изменением масштаба, и узкий диапазон малых размеров стимулов 0,19–1,0 угл. град., при которых имеется достоверная зависимость порогов восприятия от размера стимула. Измерены пороги распознавания неполных двумерных изображений трехмерных объектов от угла их наблюдения. Установлено, что восприятие наблюдателя инвариантно к изменению угла наблюдения трехмерного объекта от 15 и вплоть до 60 угл. град. Рассмотрены алгоритмы формирования представлений трехмерных объектов в зрительной системе человека и модели на основе возможных нейрофизиологических механизмов инвариантности. Предложена модель инвариантного восприятия, сочетающая известные модели лог-полярного преобразования, и модель вейвлетных преобразований – как этапа первичной фильтрации, затем этапа согласованной фильтрации и принятия решений.

Ссылка для цитирования

Фрагмент статьи

* Работа поддержана грантами РФФИ 06-07-89137-а, РГНФ 06-06-00252а.

... В повседневной жизни мы наблюдаем и узнаем изображения объектов не только разного размера, но и при разных углах наблюдения. Широкую известность получила гипотеза (Marr, 1987), согласно которой на этапе обучения зрительная система по двумерным проекциям на сетчатку глаз предъявляемых объектов строит в мозгу наблюдателя представления трехмерных объектов, которые и запоминает как шаблоны. При распознавании трехмерных объектов информация, содержащаяся в их двумерных проекциях на сетчатку глаз, используется для сравнения с хранящимися в памяти наблюдателя представлениями трехмерных объектов, сформированными на этапе обучения. Сложность зрительной задачи усугубляется тем, что вследствие варьирования угла наблюдения, масштаба, освещенности объекта, его проекции на сетчатку глаз составляют множество различающихся между собой двумерных изображений.

В связи с этим представляет существенный интерес исследование диапазонов инвариантного восприятия, т.е. таких диапазонов для различных параметров изображений объектов (угловых размеров, углов разворота и т. п.), при которых количественные характеристики процесса их восприятия остаются неизменными.

В частности, отсутствие данных о диапазоне инвариантности зрительной системы человека к различным преобразованиям вынуждает инженеров задавать заведомо избыточные параметры для искусственных распознающих систем.

В данной работе в качестве меры оценки инвариантного восприятия мы выбрали пороги распознавания неполных изображений. Приводятся количественные измерения порогов распознавания, позволяющие предположить наличие механизмов, обеспечивающих инвариантное распознавание неполных двумерных изображений трехмерных объектов при изменениях масштаба и поворотах.

Методика

Метод измерения порогов распознавания фрагментированных изображений был предложен Е. С. Голлином в 1960 г. (Gollin, 1960) и под его именем вошел в практику нейропсихологии. Мы применяли компьютеризированную версию Голлин-теста, предложенную Н. Фореманом (Foreman, 1991; Foreman, Hemmimgs, 1987) и модернизированную С. В. Прониным. В наших измерениях мы использовали набор из

75 контурных изображений общеизвестных объектов. В процессе измерений программа разбивает исходные контурные изображения на фрагменты заданного размера, которые выводятся в случайном порядке на экран монитора, постепенно формируя полный контур объекта. На рис. 1 показан принцип формирования неполных изображений при случайном предъявлении фрагментов. Число случайно расположенных в маске окон в процессе предъявления стимула нарастает. На рисунке показано конечное число фрагментов в определенный момент времени. Перед испытуемым ставили задачу как можно быстрее распознать предъявляемый стимул. Ответ при правильном распознавании объекта фиксирует пороговую суммарную площадь этих фрагментов (в % от полной площади контура). ...

Литература
  1. Александров В. В., Горский Н. Д. Представление и обработка изображений. Рекурсивный подход. Л.: Наука, 1985. 190 с.
  2. Бардин К. В. Проблема порогов чувствительности и психофизические методы. М.: Наука, 1976.
  3. Вахрамеева О. А., Шелепин Ю. Е., Мезенцев А. Ю., Пронин С. В. Изучение восприятия неполных контурных изображений различного размера // Российский физиологический журнал. 2008.Т. 94. № 10.
  4. Глезер В. Д., Дудкин К. Н., Подвигин Н. Ф. Зрительное опознание и его нейрофизиологические механизмы. М.: Наука, 1975. 272 с.
  5. Глезер В. Д., Цуккерман И. И. Информация и зрение. М.–Л.: Издательство Академии наук СССР, 1961. 182 с.
  6. Данько Р. Е., Красильников Н. Н., Кузнецов А. В., Литвинцев С. В., Малахов Ю. К., Шелепин Ю. Е. Коэффициент эффективности зрительного восприятия у здоровых наблюдателей и у больных неврозами // Оптический журнал. 1999. Т. 66. № 10. С. 65–67.
  7. Каменкович В. М., Шевелев И. А. Латентные периоды опознания человеком геометрических фигур при разной степени маскировки их сторон и углов // Физиология человека. 2006. Т. 32. № 2. С. 5–9.
  8. Кемпбелл Ф. В., Шелепин Ю. Е. Возможности фовеолы в различении объектов. Сенсорные системы. 1990.Т. 4. № 2. С. 181–185.
  9. Красильников Н. Н., Шелепин Ю. Е. Функциональная модель зрения // Оптический журнал. 1997. Т. 64. № 2. С. 72–82.
  10. Красильников Н. Н., Шелепин Ю. Е., Красильникова О. И. Фильтрация в зрительной системе человека в условиях порогового наблюдения // Оптический журнал. 1999.Т. 66. № 1. С. 5–14.
  11. Красильников Н. Н., Красильникова О. И., Шелепин Ю. Е. Измеренияальное исследование согласованной пространственной фильтрации в зрительной системе человека при наблюдении чисто хроматических изображений //Оптический журнал.  1999. Т. 66. № 10. С. 22–25.
  12. Красильников Н. Н., Шелепин Ю. Е., Красильникова О. И. Применение принципов оптимального наблюдателя при моделировании зрительной системы человека // Оптический журнал. 1999.Т. 66. № 9. С. 17–24.
  13. Красильников Н .Н., Красильникова О. И., Шелепин Ю. Е. Исследование эффективности зрительной системы человека при опознавании статических изображений // Оптический журнал. 2002.Т. 69. № 6. С. 27–34.
  14. Красильников Н. Н., Красильникова О. И. Исследование коэффициента эффективности зрительной системы человека в пороговых условиях наблюдения динамических изображений // Автометрия. 2003 а.Т. 39. № 4. С. 21–30.
  15. Красильников Н. Н., Красильникова О. И., Шелепин Ю. Е. Исследование эффективности зрительной системы человека при опознавании динамических изображений // Физиология человека. 2003 б. Т. 29. № 2. С. 5–10.
  16. Красильников Н. Н., Шелепин Ю. Е., Красильникова О. И. Исследование эффективности зрительной системы человека при опознавании движущихся объектов // Физиология человека. 2003 в.Т. 29. № 4. С. 22–30.
  17. Красильников Н. Н., Мироненко Е. П. Исследования восприятия погрешностей формы при наблюдении 3Dобъектов // Оптический журнал. 2006 а.Т. 73. № 5. С. 18–23.
  18. Красильников Н. Н., Мироненко Е. П., Красильникова О. И. Коэффициент эффективности зрительной системы человека при произвольных углах наблюдения трехмерных объектов // Оптический журнал. 2006 б. Т. 73. № 10. С. 63–68.
  19. Меркульев А. В., Шелепин Ю. Е., Чихман В. Н., Пронин С.В., Фореман Н. Оптико-геометрические характеристики и пороги восприятия фрагментированных контурных фигур // Российский физиологический журнал им. И. М. Сеченова. 2003.Т. 89. № 6. С. 731–737.
  20. Меркульев А. В., Пронин С. В., Семенов Л. А., Фореман Н., Чихман В. Н., Шелепин Ю. Е. Пороговое отношение сигнал/шум при восприятии фрагментированных фигур // Российский физиологический журнал им. И. М. Сеченова. Т. 90. № 11. С. 1348–1355. 2004.
  21. Стефанова Н. Об инвариантности зрительных образов // В сб. «2-я национальная конференция болгарского общества физиологов». София. 1964.Т. 97. С. 19.
  22. Стефанова Н. Значение признака величины в процессе узнавания зрительных объектов // В сб. «Исследование принципов переработки информации в зрительной системе». Л., 161. 1970.
  23. Фокин В. А., Шелепин Ю. Е., Хараузов А. К., Севостьянов А. В., Труфанов Г. Е., Пронин С. В. Активация областей коры головного мозга человека, активируемых при восприятии упорядоченных и хаотичных изображений // Российский физиологический журнал. 2007. Т. 93. № 10. С. 1089–1100.
  24. Цуккерман И. И. Статистическая структура изображений и особенности зрительного восприятия. В кн.: Переработка информации в зрительной системе. Л.: Наука, 1975. С. 213–215.
  25. Цуккерман И. И. О согласованности пространственно-частотных фильтров зрительного анализатора со статистикой изображений // Биофизика. 1978. Т. 23. № 6. 1108–1109.
  26. Шевелев И. А., Каменкович В. М., Шараев Г. А. Относительное значение линий и углов геометрических фигур для их опознания человеком // Журн. высш. нервн. деятельности. 2000. Т. 50. № 3. 403.
  27. Шевелев И. А., Каменкович В., Лазарева Н., Новикова Р., Тихомиров А., Шараев Г. Психофизическое и нейрофизиологическое исследование опознания неполных изображений. Сенсорные системы. 2003. Т. 1. № 4. С. 339–346.
  28. Шевелев И. А., Каменкович В. М., Лазарева Н. А., Шараев Г. А., Новикова Р. В., Тихомиров А. С. Восприятие неполных фигур и ответы стриарных нейронов на признаки изображений второго порядка // В сб. трудов 18-го съезда физиологического общества имени И. П. Павлова. Казань, 2001. С. 275–276.
  29. Шелепин Ю. Е. Локализация областей зрительной коры кошки, дающих инвариантный ответ при изменении размера изображения // Нейрофизиология. 1973. Т. 5. № 2. С. 115–121.
  30. Шелепин Ю. Е. Сопоставление топографических и пространственно-частотных характеристик латеральной супрасильвиевой и стриарной коры кошки // Нейрофизиология. 1984. Т. 16. № 1. С. 35–41.
  31. Шелепин Ю. Е., Бондарко В.  М., Данилова М. В. Конструкция фовеолы и модель пирамидальной организации зрительной системы. Сенсорные системы. Т. 9. № 1. С. 87–97. 1995.
  32. Шелепин Ю. Е., Чихман В. Н., Фореман Н. Анализ исследований восприятия фрагментированных изображений: целостное восприятие и восприятие по локальным признакам. Российский физиологический журнал. 2008. Т. 94. № 7. C. 758–776.
  33. Barlow H. B. The neurologic of matching filters. Journal of optical technology. V. 66. № 9. P. 776–781. (Барлоу Г. Нейрологика согласованных фильтров // Оптический журнал. 1999. Т. 66. № 9. С. 9–16 ).
  34. Barlow H. B. The efficiency of detecting changes of density in random dot patterns // Vision Research. 1978. V. 18. P. 637–650.
  35. Barlow H. B., Reeves B. C. The versatility and absolute efficiency of detecting mirror symmetry in random dot displays // Vision Research. 1979. V. 19. P. 783–793.
  36. Barlow H. B. The absolute efficiency of perceptual decision // Philosophical Transactions of the Royal Society, London B. 1980. 290. P. 71–82.
  37. Biederman I., Cooper E. E. Evidence for complete translational and reflectional invariance in visual object priming // Perception. 1991. V. 20. P. 585–593.
  38. Biederman I., Cooper E. E. Priming contour-deleted images: Evidence for intermediate representations in visual object recognition // Cognitive Psychology. 1991. № 23. P. 393–419.
  39. Bohm D. The special theory of relativity. Benjamin Inc., NY., 1965 (Бом Д. Специальная теория относительности. Гл. «Физика и восприятие, Роль инвариантов в восприятии». М.: Мир, 1967. C. 239–281.)
  40. Braddick O. J., Birtles D., Mills S., Warshafsk, J., Wattam-Bell J. & Atkinson J. Brain responses to global perceptual coherence // Journal of Vision. 2006. V. 6. № 6. P. 426.
  41. Braddick O. & Atkinson J. Development of brain mechanisms for visual global processing and object segmentation. In C. von Hofsten & K. Rosander (eds.). From action to cognition (Progress in Brain Research. V. 164) (PP. 151–168). Amsterdam, Elsevier. 2007.
  42. Braddick O., Wattam-Bell J., Birtles D., Atkinson J., von Hofsten C. & Nystrцm P. High-density VERPs show distinct mechanisms for global form and motion processing in adults and infants // Journal of Vision. V. 7.№ 9. P. 772. 2007.
  43. Burgess A., Wagner R., Jennings R., Barlow H. Efficiency of human visual signal discrimination // Science. 1981. V. 214. P. 93–94.
  44. Burt P., Adelson E. The Laplacian Pyramid as a Compact Image Code // IEEE Transactions on communications. 1983. № 4. Com-31.
  45. Cantoni V., Petrosino A. Neural Recognition in a Pyramidal Structure // IEEE Transactions on neural networks. 2002. V. 13. № 2.
  46. Cavanagh P. Size and Position Invariance in the Visual System // Perception. 1978. № 7. P. 167–177.
  47. Chikhman V., Shelepin Y., Foreman N., Merkuljev A., Pronin S. «Incomplete figure perception and invisible masking» // Perception. 2006.V. 35. № 11. P. 1441–1457.
  48. Dow B. M., Snyder A. Z., Vautin R. G. Magnification Factor and Receptive Field Size in Foveal Striate Cortex of the Monkey // Exp Brain Res. 1981. № 44. P. 213–228.
  49. Edelman S., Bulthoff H. Orientation Dependence in the recognition of familiar and novel views of 3D objects. // Vision Res. 1992. №.32. P. 2385–2400.
  50. Edelman S., Weinshall D. A self-organizing multiple-view representation of 3D objects // Biological Cybernetics. 1991. № 64.P. 209–219.
  51. Fiser J., Biederman I. Size invariance in visual object priming of gray-scale images // Perception. 1995. V. 2. № 7. P. 741–748.
  52. Fize D., Vanduffel W., Nelissen K., et al. The Retinotopic Organization of Primate Dorsal V4 and Surrounding Areas: A Functional Magnetic Resonance Imaging Study in Awake Monkeys // The Journal of Neuroscience. 2003. V. 23. № 19.P. 7395–7406.
  53. Foreman N. Correlates of performance on the Gollin and Mooney tests of visual closure // The Journal of General Psychology. V. 118. № 1.P. 13–20. 1991.
  54. Foreman N., Hemmings R. The Gollin incomplete figures test: a flexible, computerized version //Perception.  1987. № 16. Р. 543–548.
  55. Fraisse P., Piaget J. (Editors) Troite de psychologie experimentale // Presses universitaires de France. (Экспериментальная психология. М.: «Прогресс», 1978. Глава ХХ).
  56. Gerbino W., Fantoni C. Visual interpolation is not scale invariant // Vision Res. 2006. V. 46. № 19. Р. 3142–3159.
  57. Gollin E. S. Developmental studies of visual recognition of incomplete object // Perceptual and Motor Skills. 1960. № 11.Р. 289–298.
  58. Hebb D. The Organization of Behavior. N. Y., 1949.
  59. Hebb D. A neuropsychological theory // Psychology: A Study of a Science. N. Y., 1959.
  60. Hebb D. Intelligence, brain and the theory of mind // Brain. 1959. V. 82.
  61. Hubel D. H., Wiesel T. N. Uniformity of monkey striate cortex: A parallel relationship between field size, scatter and magnification factor // J. Comp. Neurol. 1974. V. 158. № 3. P. 295–306.
  62. Hummel J., Biederman I. Dynamic binding in a neural network for shape recognition // Psychological Review. 1992. V. 99. P. 480–517.
  63. Krasilnikov N. N., Krasilnikova O. I., Shelepin Y. E. Perception of achromatic, monochromatic, pure chromatic and chromatic noisy images by real human-observer under threshold conditions // Proceedings of SPIE. Medical Imaging 2000. San Diego, California, 2000. V. 3981. P. 78–85.
  64. Krasilnikova O. I., Krasilnikov N. N., Shelepin Y. E. Objects complexity and visual efficiency // Perception. 2000. V. 29 (suppl.). P. 23.
  65. Lazareva O., Wasserman E., Biederman I. The pigeons and humans are more sensitive to nonaccidental than to metric changes in visual objects. Behave processes. 2008. V. 77. № 2. P. 199–209.
  66. Lowe D. G. Distinctive image features from scale-invariant key points // IJCV. 2004. V. 60. № 2. Р. 91–110.
  67. Marr D. (Д. Марр. Зрение. М.: Радио и связь, 1987. 400 с. ).
  68. Mehanian С., Steven J. Rak. Bidirectional log-polar mapping for invariant object recognition. Proc. SPIE – The International Society for Optical Engineering // SPIE. 1991.№ 1471.Р. 200.
  69. Murphy T. M., Finkel L. H. Shape representation by a network of V4-like cells // Neural Networks. 2007. V. 20. Issue 8. Р. 851–867.
  70. Patterson M. B., Mack J. L., Schnell A. H. Performance of elderly and young normals on the Gollin Incomplete Pictures Test // Perceptual and Motor Skills. 1999. V. 89. № 2. Р. 663–664.
  71. Poggio T., Edelman S. A network that learns to recognize 3D objects // Nature. 1990. V. 343. P. 263–266.
  72. Polimeni J.R., Balasubramanian M., and. Schwartz E. L. Multi-area visuotopic map complexes in macaque striate and extra-striate cortex // Vision research. 2006. V. 46. № 20. Р. 3336–3359.
  73. Ross J., Jenkins B., Johnstone J. R. Size constancy fails below half a degree // Nature. 1980. V. 283. № 5746. Р. 473–474.
  74. Schwartz E. L. Computational anatomy and functional architecture of striate cortex: a spatial mapping approach to perceptual coding // Vision Res. 1980. № 20. P. 645–669.
  75. Schwartz E. L. Cortical mapping and perceptual invariance: a reply to Cavanagh // Vision Res. 1983. V. 23. № 8. Р. 831–835.
  76. Shelepin Y. E., Krasilnikov N. N., Krasilnikova O. I., Chihman V. N. What Visual Perception Model is Optimal in Terms of Signal-to-Noise Ratio? Proceedings of SPIE // Medical Imaging. San Diego, California, 2000. № 3981.Р. 161–169.
  77. Shepard R., Cooper L. Mental images and their transformation. Cambridge: MIT Press, 1983.
  78. Skottun B. C., Freeman R. D. Perceived size of letters depends on inter-letter spacing: a new visual illusion // Vision Res. 1983. № 23. Р. 111–112.
  79. Srinivas K. Size and reflection effects in priming: a test of transfer appropriate processing // Memory and Cognition. 1996. № 24. Р.  441–452.
  80. Singh M., Fulvio J. Bayesian contour extrapolation: Geometric determinations of good continuation // Vision Res. 2007. V. 47. P. 783–798.
  81. Stefanova N. Effects of the angle of rotation of visual objects on recognitionin a time-deficit situation // Visual information processing. Sofia, 1974. P. 109–114.
  82. Sutherland N. S. The representation of three-dimensional objects // Nature. 1979. V. 278. P. 395–398.
  83. Sutherland N. C. Theories of shape discrimination in octopus // Nature. 1960. № 186. P. 840.
  84. Sutherland N. S. Outlines of a theory of visual pattern recognition in animals and man // Proc. Roy. Soc. 1968. B. 171. P. 297–317.
  85. Tarr M., Williams P., Hayward W., Gauthier I. Three-dimensional object recognition is viewpoint dependent. Nature Neuroscience. 1998. № 1. Р. 275–277.
  86. Ullman S. Aligning pictorial descriptions: An approach to object recognition // Cognition. 1989. № 32. Р. 193–254.
  87. Ullman S. High-level Vision. Cambridge, MA:MIT, 1996.
  88. Van Nes F., Bouman M. Variation of contrast sensitivity with luminance // Journal of Optical Society of America. 1967. V. 57. P. 401–406.
  89. Wang G., Obama S., Yamashita W., Sugihara T., Tanaka K. Prior experience of rotation is not required for recognizing objects seen from different angles // Nature. Neuroscience. 2005. V. 8. № 12. P. 1568–1574.
  90. Weiman C. F. R. Log-polar vision for mobile robot navigation. Electronic Imaging. 1990. 90 Conf., Р. 382–385.
  91. Wilson J. R., Sherman S. M. Receptive-field characteristics of neurons in cat striate cortex: Changes with visual field eccentricity // Journal of Neurophysiology. 1976. V. 39. № 3. P. 512–533.
  92. Zokai S., Wolberg G. Image registration using log-polar mappings for recovery of large-scale similarity and projective transformations. Image Processing, IEEE Transactions. 2005. V. 14. № 10. P. 1422–1434.
Статьи по теме:
 
Webometrics
О проекте PsyJournals.ruЛауреат XIV национального психологического конкурса «Золотая Психея» по итогам 2012 года

© 1997–2018 Портал психологических изданий PsyJournals.ru  Все права защищены

Свидетельство регистрации СМИ Эл № ФС77-66447 от 14 июля 2016 г.

Издатель: ФГБОУ ВО МГППУ

Лауреат XIV национального психологического конкурса «Золотая Психея» по итогам 2012 года

RSS-анонсы журналов Psyjournals на facebook Группа Psyjournals Вконтакте Twitter Psyjournals
Индекс цитирования Яндекс.Метрика