Портал психологических изданий PsyJournals.ru
ОТКРЫТЫЙ ДОСТУП К НАУЧНЫМ ИЗДАНИЯМ 
Каталог изданий 89Рубрики 51Авторы 7730Ключевые слова 18767 Online-сборники NEW! 1 АвторамИздателямRSS RSS
РИНЦ

Моделирование и анализ данных

Издатель: Московский государственный психолого-педагогический университет

ISSN (печатная версия): 2219-3758

ISSN (online): 2311-9454

DOI: http://dx.doi.org/10.17759/mda

Издается с 2011 года

Периодичность: 1 номер в год

Язык журнала: русский

Доступ к электронным архивам: открытый

 

Численные решения задачи на собственные значения для обыкновенных дифференциальных уравнений второго порядка с особыми точками 884

Полупанов А.Ф., доктор физико-математических наук, ведущий научный сотрудник Института радиотехники и электроники им. В.А. Котельникова РАН, профессор кафедры прикладной математики факультета информационных технологий МГППУ, sashap55@mail.ru

Аннотация

Представлен явный численный метод решения задачи на собственные значения и связанных с ней проблем для обыкновенного дифференциального уравнения второго порядка с особыми точками, а именно, радиального уравнения Шредингера, описывающего кулоновские состояния водородоподоб-ного атома, в частности, состояния мелких донорных примесей в объёмном прямозонном полупро-воднике или в полупроводниковой квантовой точке. Вычислены энергии и волновые функции нескольких нижайших дискретных состояний водородоподобного атома как в случае, когда известно точное аналитические решения задачи, что позволяет оценить точность метода, так и в случаях, когда применимы только численные методы. Рассмотрены следующие проблемы: связанные состояния во-дородоподобной примеси в квантовой точке, волновая функция основного состояния водородоподобных атомов в модели потенциала центральной ячейки нулевого радиуса, связанные состояния для кулоновского потенциала с жёсткой сердцевиной.

Ссылка для цитирования

Фрагмент статьи

Уравнение (1) имеет две особые точки: регулярную особенность при r = 0 и иррегу­лярную особенность при r = ∞. Уравнение (1) описывает кулоновские состояния атома водорода и водородоподобного ато­ма в различных системах, например, состояния мелких донорных примесей в объёмных пря­мозонных полупроводниках или в полупроводниковых квантовых точках.

Литература
  1. Ландау Л.Д., Лифшиц Е.М. Квантовая механика. Нерелятивистская теория. − М.: Наука, 1989.
  2. Мессиа А. Квантовая механика. − М.: Наука, Т.1, 1978.
  3. Polupanov A.F., Kogan Sh.M. Lines intensities in shallow acceptor spectra in germanium. − Sov. Phys. Semicond. 1979, 13 (12), pp. 1368-1371.
  4. Pajot B., Beinikhes I.L., Kogan Sh.M., Novak M.G. Polupanov A.F., Song C. The interpreta­tion of the p3/2 spectra of group III acceptors in silicon. − Semicond. Sci. Technol. 1992, 7, pp. 1162-1169.
  5. Polupanov A.F., Galiev V.I., Zhuravlev V.E. − Materials Science Forum. 1990, 65&66, pp. 41­46.
  6. Galiev V.I., Polupanov A.F., Shparlinski I.E. On the construction of solutions of systems of linear ordinary differential equations in the neighbourhood of a regular singularity. − J. of Computational and Applied Mathematics, 1992, v. 39, pp. 151 -163.
  7. Galiev V.I., Polupanov A.F., Accurate solutions of coupled radial Schrödinger equations. − J. Phys. A: Math. Gen., 1999, v. 32, pp. 5477-5492.
  8. Федорюк М.В. Асимптотические методы линейных обыкновенных дифференциальных уравнений. − М.: Наука, 1985.
  9. Wasow W. Asymptotic expansions for ordinary differential equations. − New York, London, Sydney: Interscience Publishing, 1965.
  10. Polupanov A.F., Galiev V.I., Novak M.G. Effect of the spin-orbit interaction on the optical spectra of an acceptor in a semiconductor quantum dot. − Semiconductors, 1997, 31 (11), pp. 1185-1191.
  11. Yamasaki Sh. A new method for treating the hard core potential, − Progress of Theoretical Physics. 2006, 115 (1), pp. 89-114.
 
О проекте PsyJournals.ruЛауреат XIV национального психологического конкурса «Золотая Психея» по итогам 2012 года

© 1997–2018 Портал психологических изданий PsyJournals.ru  Все права защищены

Свидетельство регистрации СМИ Эл № ФС77-66447 от 14 июля 2016 г.

Издатель: ФГБОУ ВО МГППУ

Лауреат XIV национального психологического конкурса «Золотая Психея» по итогам 2012 года

RSS-анонсы журналов Psyjournals на facebook Группа Psyjournals Вконтакте Twitter Psyjournals Psyjournals на Youtube
Яндекс.Метрика