Портал психологических изданий PsyJournals.ru
Каталог изданий 96Рубрики 51Авторы 8428Ключевые слова 20536 Online-сборники 1 АвторамRSS RSS

Включен в Web of Science СС (ESCI)

ВАК

РИНЦ

Рейтинг Science Index РИНЦ 2017

31 место — направление «Психология»

0,423 — показатель журнала в рейтинге SCIENCE INDEX

0,649 — двухлетний импакт-фактор

CrossRef

Клиническая и специальная психология

Издатель: Московский государственный психолого-педагогический университет

ISSN (online): 2304-0394

DOI: http://dx.doi.org/10.17759/cpse

Лицензия: CC BY-NC 4.0

Издается с 2012 года

Периодичность: 4 номера в год

Формат: электронное издание

Язык журнала: русский, английский

Доступ к электронным архивам: открытый

 

Методы профилактики депрессии на диджитал-платформах и в социальных медиа 75

Данина М.М., кандидат психологических наук, старший научный сотрудник лаборатории научных основ психотерапии и консультировной психологии, Психологический институт Российской академии образования (ФГБНУ «ПИ РАО»), Москва, Россия, mdanina@yandex.ru
Кисельникова Н.В., кандидат психологических наук, заведующая лабораторией консультативной психологии и психотерапии, Психологический институт Российской академии образования (ФГБНУ «ПИ РАО»), Москва, Россия, nv_psy@mail.ru
Куминская Е.А., научный сотрудник лаборатории консультативной психологии и психотерапии, ФГБНУ «ПИ РАО», Москва, Россия, evgenia.kuminskaya@gmail.com
Лаврова Е.В., кандидат психологических наук, старший научный сотрудник, лаборатория консультативной психологии и психотерапии, Психологический институт Российской академии образования (ФГБНУ «ПИ РАО»), Москва, Россия, may_day@list.ru
Греськова П.А., студентка факультета психологии, Санкт-Петербургский государственный университет (ФГБОУ ВО СПбГУ), Санкт-Петербург, Россия, polina.greskova@gmail.com

Аннотация

Распространенность депрессии среди населения констатируется на уровне 8-12%. Всемирная организация здравоохранения признает, что существующая система помощи недостаточно успешна в работе с депрессией, и отдает приоритет онлайн-методам – доступным широкому кругу и за счет анонимности позволяющим преодолеть проблему стигматизации людей с депрессией. В статье рассмотрены актуальные тенденции использования средств онлайн-диагностики (мобильные приложения и специальные гаджеты), анализа цифровых следов в социальных медиа для выявления групп риска в отношении депрессии. Представлено описание содержания онлайн-профилактических программ, приведены данные об их эффективности, области применения, преимуществах и ограничениях. Перспектива исследований состоит в изучении механизмов и выявлении конкретных компонентов программ, связанных с профилактическим эффектом, а также возможностей применения онлайн-методов для работы с другими психическими расстройствами.

Ссылка для цитирования

Финансирование

Работа выполнена при поддержке гранта РФФИ, проект № 17-29-02225.

Литература
  1. Вачкова С.Н. Особенности сетевых форм коммуникации современных школьников // Социальная психология и общество. 2014. Т. 5. № 4. С. 135–144.
  2. Иванов В.Г., Лазарева Е.Ю., Николаев Е.Л. Применение современных информационно-коммуникационных технологий в психотерапевтической и психологической практике (обзор зарубежных исследований) // Проблемы современного педагогического образования. 2017. Т. 57. № 6. С. 321–329.
  3. Меновщиков В.Ю. Психологическая помощь в сети Интернет. [Электронный ресурс]. М., 2007. 178 с. URL: http://flogiston.ru/articles/netpsy/psyhelp_in_internet (дата обращения: 31.10.2019).
  4. Совков С.В. Перспективы и опыт использования интернет-технологий
    в лечении послеродовой депрессии // Медицинская наука и образование Урала. 2013. Т. 14. №3. С. 168–170.
  5. Солдатова Г.У. Цифровая социализация в культурно-исторической парадигме: изменяющийся ребенок в изменяющемся мире // Социальная психология
    и общество. 2018. Т. 9. № 3. С. 71–80. doi:10.17759/sps.2018090308
  6. AlhanaiT., Ghassemi M., Glass J. Detecting depression with audio/text sequence modeling of interviews // Procedia Interspeech. 2018. Vol. 2522. P. 1716–1720. doi: 10.21437/Interspeech.2018-2522
  7. Andersson G., Bergström J., Holländare F., et al. Internet-based self-help for depression: randomised controlled trial // The British Journal of Psychiatry. 2005. Vol. 187. № 5.
    P. 456–461. doi:10.1192/bjp.187.5.456
  8. Anguera J.A., Gunning F.M., Areán P.A. Improving late life depression and cognitive control through the use of therapeutic video game technology: A proof‐of‐concept randomized trial // Depression and anxiety. 2017. Vol. 34. № 6. P. 508–517. doi: 10.1002/da.22588
  9. Arean P.A., Hallgren K.A., Jordan J.T., et al. The Use and Effectiveness of Mobile Apps for Depression: Results from a Fully Remote Clinical Trial // Journal of Medical Internet Research. 2016. Vol. 18. № 12. P. 330. doi: 10.2196/jmir.6482
  10. Barnes C., Harvey R., Mitchell P., et al. Evaluation of an online relapse prevention program for bipolar disorder: an overview of the aims and methodology of a randomized controlled trial // Disease Management & Health Outcomes, 2007. Vol. 15. № 4.
    P. 215–224. doi: 10.1037/prj0000270
  11. Barrera A.Z., Wickham R.E., Muñoz R.F. Online prevention of postpartum depression for Spanish- and English-speaking pregnant women: A pilot randomized controlled trial // Internet Interventions. 2015. Vol. 2. № 3. P. 257–265. doi: 10.1016/j.invent.2015.06.002
  12. Birmaher B., Brent D., Laurel C., et al. Psychometric properties of the Screen for Child Anxiety Related Emotional Disorders (SCARED): a replication study // Journal of the American Academy of Child & Adolescent Psychiatry. 1999. Vol. 38. № 10. P. 1230–1236. doi:10.1097/00004583-199910000-00011
  13. Brugha T.S., Wheatley S., Taub N.A., et al. Pragmatic randomized trial of antenatal intervention to prevent postnatal depression by reducing psychosocial risk factors // Psychological Medicine. 2000. Vol. 30. № 6. Р. 1273–1281. doi: 10.1017/S0033291799002937
  14. Buntrock C., Ebert D.D., Lehr D., et al. Effect of a Web-Based Guided Self-help Intervention for Prevention of Major Depression in Adults with Subthreshold Depression:
    A Randomized Clinical Trial // JAMA, 2016. Vol. 315. № 17. P. 1854. doi: https://doi.org/10.1001/jama.2016.4326
  15. Cheng S.K., Dizon J. Computerised cognitive behavioural therapy for insomnia:
    a systematic review and meta-analysis // Psychotherapy and psychosomatics. 2012.
    Vol. 81. № 4. P. 206–216. doi: 10.1159/000335379
  16. Choudhury M. de, Gamon M., Counts S., et al. Predicting Depression via Social Media // International AAAI Conference on Weblogs and Social Media (ICWSM 2013) / A. Cohn (ed.). P. 128–137.
  17. D'Alfonso S., Santesteban-Echarri O., Rice S., et al. Artificial Intelligence-Assisted Online Social Therapy for Youth Mental Health [Электронный ресурс] // Frontiers
    in Psychology. 2017. № 8. P. 796. doi: 10.3389/fpsyg.2017.00796. URL: https://www.frontiersin.org/articles/10.3389/fpsyg.2017.00796/full (дата обращения: 31.10.2019).
  18. Dandeneau S.D., Baldwin M.W., Baccus J.R., et al. Cutting stress off at the pass: reducing vigilance and responsiveness to social threat by manipulating attention // Journal of Personality and Social Psychology. 2007. Vol. 93. № 4. P. 651. doi: 10.1037/0022-3514.93.4.651
  19. Dao B., Nguyen T., Venkatesh S., et al. Nonparametric discovery of online mental health-related communities, Data Science and Advanced Analytics (DSAA) // IEEE International Conference. 2015 / E. Gaussier, L. Cao, P. Gallinari, et al. (eds.). P. 1–10.
    doi: 10.1109/DSAA.2015.7344841
  20. Ebert D., Lehr D., Baumeister H., et al. GET.ON Mood Enhancer: efficacy of Internet-based guided self-help compared to psychoeducation for depression: an investigator-blinded randomised controlled trial [Электронный ресурс] // Trials. 2014. Vol. 15. №1.
    P. 39. URL: https://trialsjournal.biomedcentral.com/articles/10.1186/1745-6215-15-39 (дата обращения: 31.10.2019).
  21. Farhan A.A., Lu J., Bi J., et al. Multi-view Bi-clastering to identify smartphone sensing features indicative of depression // Connected Health: Applications, Systems and Engineering Technologies (CHASE), IEEE First International Conference / O’Conner L. (ed.). 2016. P. 264–273.
  22. Giosan C., Mogoaşe C., Cobeanu O., et al. Using a smartphone app to reduce cognitive vulnerability and mild depressive symptoms: study protocol of an exploratory randomized controlled trial [Электронный ресурс] // Trials. 2016. Vol. 17. № 1. P. 609. doi: 10.1186/s13063-016-1740-3 (дата обращения: 31.10.2019).
  23. Haque A., Guo M., Miner A.S., Fei-Fei L. Measuring Depression Symptom Severity from Spoken Language and 3D Facial Expressions [Электронный ресурс] // URL: arXiv preprint arXiv:1811.08592. 2018. (дата обращения: 31.10.2019).
  24. Holländare F., Anthony S., Randestad M., et al. Two-year outcome of internet-based relapse prevention for partially remitted depression // Behaviour Research and Therapy. 2013. Vol. 51. № 11. Р. 719–722. doi: 10.1016/j.brat.2013.08.002
  25. Kessler R.C., Berglund P., Demler O., et al. The Epidemiology of Major Depressive Disorder // JAMA. 2003. Vol. 289. № 23. P. 3095. doi: 10.1001/jama.289.23.3095 
  26. Kovacs M., Garrison B. Hopelessness and eventual suicide: a 10-year prospective study of patients hospitalized with suicidal ideation // American journal of Psychiatry. 1985. Vol. 1. № 42. P. 559–563. doi: 10.1176/ajp.142.5.559
  27. Kuehner C. Gender differences in unipolar depression: an update of epidemiological findings and possible explanations // Acta Psychiatrica Scandinavica. 2003. Vol. 108. № 3. P. 163–174. doi: 10.1034/j.1600-0447.2003.00204.x
  28. Liu P., Tov W., Kosinski M., et al. Do Facebook Status Updates Reflect Subjective Well-Being? // Cyberpsychology, Behavior, and Social Networking. 2015. Vol. 18. № 7.
    Р. 373–379. doi: 10.1089/cyber.2015.0022
  29. Ly K., Carlbring P., Andersson G. Behavioral activation-based guided self- help treatment administered through a smartphone application: study protocol for
    a randomized controlled trial [Электронный ресурс] // Trials. 2012. № 13. P. 62. doi: 10.1186/1745-6215-13-62 (дата обращения: 31.10.2019).
  30. Mackinnon A., Griffiths K. M., Christensen H. Comparative randomized trial of online cognitive–behavioral therapy and an information website for depression: 12-month outcomes // The British Journal of Psychiatry. 2008. Vol. 192. № 2. P. 130–134.
    doi: 10.1192/bjp.bp.106.032078.
  31. Marrs R.W. A meta‐analysis of bibliotherapy studies // American Journal of community psychology. 1995. Vol. 23. № 6. P. 843–870. doi: 10.1007/BF02507018
  32. Meyer B., Berger T.F., Caspar C., et al. Effectiveness of a Novel Integrative Online Treatment for Depression (Deprexis): Randomized Controlled Trial [Электронный ресурс] // Journal of Medical Internet Research. 2009. Vol. 11. № 2. P. 15.
    doi: 10.2196/jmir.1151. URL: https://www.jmir.org/2009/2/e15/ (дата обращения: 31.10.2019).
  33. Mohr D.C., Duffecy J., Jin L., et al. Multimodal e-mental health treatment for depression: a feasibility trial [Электронный ресурс] // Journal of Medical Internet Research. 2010. Vol. 12. № 5. P. 48. doi: 10.2196/jmir.1370. URL: https://mhealth. jmir.org/2019/1/e10948/ (дата обращения: 31.10.2019).
  34. Mowery D.L., Smith H., Cheney T., et al. Towards automatically classifying depressive symptoms from Twitter data for population health // Proceedings of the Workshop on Computational Modeling of People’s Opinions, Personality, and Emotions in Social Media (PEOPLES) / M. Nissim, V. Patti, B. Plank (eds.). 2016. Р. 182–191.
    doi: 8. 10.5210/ojphi.v8i1.6561
  35. Muñoz R.F., Cuijpers P., Smit F., et al. Prevention of major depression // Annual Review of Clinical Psychology. 2010. Vol. 6. №1. P. 181–212. doi: 10.1146/annurev-clinpsy-033109-132040
  36. Park J., Cha M., Kim H., et al. Managing Bad News in Social Media: A Case Study on Domino’s Pizza Crisis // The 6th International AAAI Conference On Weblogs and Social Media (ICWSM 2012). Trinity College in Dublin, Ireland, June 4–8, 2012 / J. Breslin,
    J. Shanahan, N. Ellison, Z. Tufekci (Eds.). 2012. P. 282–289.
  37. Pecina J., North F., Williams M.D., et al. Use of an on-line patient portal in
    a depression collaborative care management program // Journal of Affective Disorders. 2017. Vol. 208. P. 1–5. doi: 10.1016/j.jad.2016.08.034
  38. Ranney M.L., Freeman J.R., Connell G., et al. A Depression Prevention Intervention for Adolescents in the Emergency Department // Journal of Adolescent Health. 2016.
    Vol. 59. № 4. P. 401–410. doi: 10.1016/j.jadohealth.2016.04.008
  39. Reece A.G., Danforth C.M. Instagram photos reveal predictive markers of depression [Электронный ресурс] // EPJ Data Science. 2017. Vol. 6. P. 15. URL: https://epjdatascience.springeropen.com/articles/10.1140/epjds/s13688-017-0110-z (дата обращения: 31.10.2019).
  40. Rice F., Rawal A., Riglin L., et al. Examining reward-seeking, negative self-beliefs and over-general autobiographical memory as mechanisms of change in classroom prevention programs for adolescent depression // Medical Research Council. 2015. Vol.186. P. 320–327. doi: 10.1016/j.jad.2015.07.019
  41. Rice S.M., Goodall J., Hetrick S.E., et al. Online and Social Networking Interventions for the Treatment of Depression in Young People: A Systematic Review [Электронный ресурс] // Journal of Medical Internet Research. 2014. Vol. 16. № 9. P. 206.
    doi: 10.2196/jmir.3304. URL: https://www.jmir.org/2014/9/e206/ (дата обращения: 31.10.2019).
  42. Schwartz H.A., Sap M., Kern M.L., et al. Predicting individual well-being through the language of social media [Электронный ресурс] // Pacific Symposium on Biocomputing. 2016. P. 516–527. URL: http://psb.stanford.edu/psb-online/proceedings/psb16/ (дата обращения: 31.10.2019).
  43. Seabrook E.M., Kern M.L., et al. Predicting depression from language-based emotion dynamics: longitudinal analysis of Facebook and Twitter status updates [Электронный ресурс] // Journal of Medical Internet Research. 2018. Vol. 20. № 5. P. 168.
    URL: https://www.jmir.org/2018/5/e168/ (дата обращения: 31.10.2019).
  44. Tasnim M., Shahriyar R., Nahar N., et al. Intelligent Depression Detection and Support System: Statistical Analysis, Psychological Review and Design Implication. International Conference on e-Health Networking, Applications and Services [Электронный ресурс] // IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom). 2016. Р. 1–6. URL: https://ieeexplore. ieee.org/xpl/conhome/7701172/proceeding (дата обращения: 31.10.2019).
  45. UN health agency reports depression now «leading cause of disability worldwide» [Электронный ресурс] /// UN News. 23 February 2017. Retrieved 27 June 2019. URL: https://news.un.org/en/story/2017/02/552062-un-health-agency-reports-depression-now-leading-cause-disability-worldwide (дата обращения: 31.10.2019).
  46. Välimäki M., Anttila K., Anttila M., et al. Web-Based Interventions Supporting Adolescents and Young People with Depressive Symptoms: Systematic Review and Meta-Analysis [Электронный ресурс] // Journal of Medical Internet Research. 2017. Vol. 5.
    № 12. Р. 180. URL: https://mhealth.jmir.org/2017/12/e180 (дата обращения: 31.10.2019).
  47. Van Zoonen K. Buntrock C., Ebert D.D., et al. Preventing the onset of major depressive disorder: a meta-analytic review of psychological interventions // International Journal of Epidemiology. 2014. Vol. 43. № 2. P. 318–329. doi: 10.1093/ije/dyt175
  48. Voogd E.L. de, Wiers R.W., Prins P.J., et al. Online attentional bias modification training targeting anxiety and depression in unselected adolescents: Short- and long-term effects of a randomized controlled trial // Behaviour Research and Therapy. 2016. Vol. 87. P. 11–22.  doi: 10.1016/j.brat.2016.08.018
  49. Wee J., Jang S., Lee J., et al. The influence of depression and personality on social networking // Computers in Human Behavior. 2017. Vol. 74. P. 45–52.
    doi: 10.1016/j.chb.2017.04.003
  50. Wittchen H.U., Müller N., Pfister H., et al. Häufigkeit und Versorgung von Depressionen. Ergebnisse des bundesweiten Gesundheitssurveys // Psychische Störungen Erscheinungsformen Fortschritte der Medizin. 2000. Vol. 118. № 1. P. 1–41.
  51. Yates A., Cohan A., Goharian N. Depression and self-harm risk assessment in online forums [Электронный ресурс]. 2017 // URL: arXiv preprint arXiv:1709.01848.  (дата обращения: 31.10.2019).
  52. Zhu C., Li B., Li A., et al. Predicting Depression from Internet Behaviors by Time-frequency Features [Электронный ресурс] // IEEE/WIC/ACM International Conference on Web Intelligence. October 13-16, 2016. Hilton Omaha, USA. 2016. P. 383–390.
    doi: 10.1109/WI.2016.0060 (дата обращения: 31.10.2019).
Статьи по теме
 
О проекте PsyJournals.ru

© 2007–2019 Портал психологических изданий PsyJournals.ru  Все права защищены

Свидетельство регистрации СМИ Эл № ФС77-66447 от 14 июля 2016 г.

Издатель: ФГБОУ ВО МГППУ

Creative Commons License

Яндекс.Метрика