> Метод регистрации торзионных движений глаз человека в условиях свободного поведения - Экспериментальная психология - 2009. Том. 2, № 1
Портал психологических изданий PsyJournals.ru
ОТКРЫТЫЙ ДОСТУП К НАУЧНЫМ ИЗДАНИЯМ 
Каталог изданий 68Рубрики 50Авторы 6507Ключевые слова 15102 АвторамИздателямRSS RSS
ВАК РИНЦ ВИНИТИ Web of Science EBSCO Ulrichsweb DOAJ ERIH PLUS
CrossRef

Экспериментальная психология

Издатель: Московский городской психолого-педагогический университет

ISSN (печатная версия): 2072-7593

ISSN (online): 2311-7036

DOI: http://dx.doi.org/10.17759/exppsy

Издается с 2008 года

Периодичность: 4 номера в год

Доступ к электронным архивам: открытый

 

Метод регистрации торзионных движений глаз человека в условиях свободного поведения 368

Белопольский В.И., доктор психологических наук, заведующий отделом Института психологии РАН, Москва, Россия, vbelop@cogito-centre.com

Аннотация

Описаны принципы и техническая реализация нового фотоэлектрического метода регистрации торзионных движений глаз человека. Излучатель поляризованного света располагается на голове испытуемого, тогда как парный преобразователь с поляризационным фильтром крепится непосредственно к глазу с помощью центральной присоски и преобразует световой поток излучателя в электрический сигнал. Такая конструкция позволяет проводить измерения в условиях свободного поведения, что и было продемонстрировано в лабораторных и натурных экспериментах. Результаты апробации показали высокую чувствительность данной методики и позволили зарегистрировать широкий спектр торзионных движений глаз.

Ссылка для цитирования

Фрагмент статьи

... С некоторыми допущениями можно считать, что глаз вращается внутри орбит относительно фиксированного центра, смещенного примерно на 13,5 мм от вершины роговицы. Поскольку глаз с физической точки зрения представляет собой маятник в инерционном поле, подвешенный на 3 парах экстраокулярных мышц (горизонтальных, вертикальных и косых), он имеет 3 степени свободы. При этом он не имеет фиксированных осей вращения. Поэтому чтобы описать позицию или движение глаза, надо договориться о системе координат. Выбор такой системы достаточно произволен, однако какая-то из них может быть практически более полезна, чем другая. Фик (Fick, 1854) предложил 3-осевую модель, в которой углы поворота относительно каждой из осей однозначно специфицируют положение глаза в орбитах и относительно головы. В качестве основной рассматривается вертикальная (фиксированная относительно головы или, в случае нормальной ориентации головы, относительно направления гравитации) ось, вокруг которой совершаются горизонтальные движения глаз, тогда как вертикальные движения глаз совершаются вокруг оси в горизонтальной плоскости, вращающейся вместе с горизонтальными движениями глаз. Глаз может также вращаться вокруг зрительной оси (торзия). Поскольку практически определить вертикальную ось вращения достаточно трудно (так как череп и орбиты не содержат явных меток вертикальности), то Гельмгольц (Helmholtz, 1866) предложил свою систему координат, испытывавшую в этом смысле меньшие трудности. Эта система состоит из фиксированной горизонтальной оси, проходящей через центры вращения обоих глаз, и вертикальной оси, вращающейся вместе с горизонтальной осью. Фактически система координат Гельмгольца представляет собой повернутую на 90° систему координат Фика. Здесь также ТДГ совершаются вокруг зрительной оси (рис. 1).

Однако несмотря на кажущуюся схожесть этих двух координатных систем, ориентация вертикального меридиана глаза при перемещении из первичной (в центре орбит) в третичную (в направлении между вертикалью и горизонталью) позицию будет совпадать с объективной вертикалью в системе координат Фика и систематически отклоняться от нее в системе координат Гельмгольца. Надо подчеркнуть, что природа этих различий заключается не в последовательности движений глаз, а в иерархии осей вращения, которыми оперирует каждая из этих координатных систем.

Для преодоления этих трудностей Листинг предложил использовать полярную координатную систему, имеющую только две степени свободы. Согласно «закону Листинга», поворот глаза происходит вокруг единственной оси, расположенной в экваториальной плоскости («плоскость Листинга»), проходящей через центр вращения глаза, находящегося в первичной позиции. Таким образом, координатами этой системы являются наклон этой оси и угол вращения относительно нее. Никаких ТДГ система координат Листинга не предусматривает. Следствием такого описания является то, что меридиан глаза, который в первичной позиции совпадает с гравитационной вертикалью, не меняет своей ориентации при перемещении глаза во вторичную позицию (строго назально-темпорально или вверх-вниз), но систематически отклоняется от вертикали в любой третичной позиции. Это отклонение меньше, чем в системе координат Гельмгольца, а в системе координат Фика, как мы отмечали выше, такое отклонение отсутствует (рис. 2). Для того чтобы достичь той же третичной позиции глаза, которую предсказывает система координат Листинга, системы координат Фика и Гельмгольца должны быть повернуты относительно зрительной оси, но в разные стороны. Такое вращение было названо «ложной торзией», или циклоторзией по отношению к объективной вертикали (Boeder, 1957).

Дондерс обобщил закон Листинга и сформулировал положение, что торзионная позиция глаз для данной позиции взора не зависит от траектории, по которой они двигались, чтобы достичь этой позиции. Другими словами, «закон Дондерса», как назвал его Гельмгольц, предсказывает отсутствие гистерезиса, или коммутативность движений глаз. ...

Литература
  1. Белопольский В. И., Вергилес Н. Ю. Фотоэлектрический метод регистрации ротаторных движений глаз человека // Космическая биология и авиакосмическая медицина. 1990. Т. 24. № 5. C. 51–53.
  2. Левашов М. М., Дмитриева А. В. Способ регистрации ротаторных рефлексов глаз // Космическая биология. 1981. Т. 15. № 6. С. 80–82.
  3. Barany R. Über die vom Ohrlabyrinth ausgelaste Gegenrollung der Augen bei ormalhörenden,
    Ohrenkranken und Taubstummen // Arch. für Ohrenheilk. 1906. B.68. S. 1–30.
  4. Boeder P. The cooperative action of extraocular muscles // Br. J. Ophthalmol. 1957. V. 46. P. 397–403.
  5. Collewijn H., Van der Mark F., Jansen T. C. Precise recording of the eye movements // Vision Res. 1975. V. 15. P. 447–450.
  6. Delage Y. Sur le mouvements de torsion de l’oeil pendant la rotation de la tлte // Ann. d’Oculist. 1903. V. 130 P. 180–186.
  7. Diamond S. G., Markham C. H., Simpson N. E, Curthoys I. S. Binocular counterrolling in humans during dynamic rotation // Acta Otolaryngol. 1979. V. 87. P. 490–501.
  8. Diamond S. G., Markham C. H., Furaya N. Binocular counterrolling during sustained body tilt in normal humans and in a patient with unilateral vestibular nerve section // Ann. Otolaryngol. 1982. V. 91. P. 225–229.
  9. Edelman E. R. Video based monitoring of torsional eye movements. M. S. Thesis, MIT. 1979.
    Donders F. C. Über das Gesetz der Lage der Netzhaut in Beziehung zu der der Blickebene // Alb. von Graefes Arch. für Ophth. 1875. V. 21. P. 125–130.
  10. Ferman L., Collewijn H., Van den Berg A. V. A direct test of Listing’s law. I. Human ocular torsion measured in static tertiary positions // Vision Res. 1987a. V. 27. P. 929–938.
  11. Ferman L., Collewijn H., Van den Berg A. V. (1987b) A direct test of Listing’s law. II. Human ocular torsion measured under dynamic conditions. Vision Res V. 27. P. 939–951.
  12. Ferman L., Collewijn H., Jansen T. C., Van den Berg A. V. Human gaze stability in the horizontal, vertical and torsional directions during voluntary head movements, evaluated with a three-dimensional scleral induction coil technique // Vision Res. 1987. V. 27. P. 811–828.
  13. Fick A. Die Bewegungen des menschlichen Auges // Z. für rationelle Medizin. 1854. V. 4. P. 101–128.
  14. Fluur E. A comparison between subjective and objective recording of ocular counter-rolling as a result of tilting // Acta Otolaryngol. 1975. V. 79. P. 111–114.
  15. Hatamian M., Anderson D. J. Design considerations for a real-time ocular counterroll instrument // IEEE Trans Biomed Engin. 1983. V. 30. P. 278–288.
  16. Howard I. P. Human Visual Orientation. New York, 1982.
  17. Howard I. P., Evans J. A. The measurement of the eye torsion // Vision Res. 1963. V. 3. P. 447–455.
  18. Hunter J. The use of the oblique muscles // Observations on certain parts of the animal economy. 1786. London. Second edition (1792), quoted by Nagel (1871).
  19. Kamada O., Stao K., Kitamuro S., Nakamuro H. Two automatic methods of measuring the counterrolling of human eyes. Digest of 11th International Conference on Medical and Biomedial engineering. 1976. Ohawa, P. 510–511.
  20. Kellogg R. S. Dynamic counterrolling of the eye in normal subjects and in persons with bilateral labyrinthine defects // The Role of the Vestibular Organs in Space Explorations. NASA, SP–65. 1965.
  21. Kertesz A. E., Jones R. W. The effect of angular velocity of stimulus on human torsional eye movements // Vision Res. 1969. V. 9. P. 995–998.
  22. Krejcová H., Highstein S., Cohen B. Labyrinthine and extra-labyrinthine effects on ocular counterrolling // Acta Otolaryngol. 1971. V. 72. P. 165–171.
  23. Matin L., Pearce D. G. Three dimentional recording of eye movements by a contact-lens technique // Biomed. Sci. Instr. 1964. V. 2. P. 79–95.
  24. Miller E. F. Counterrolling of the human eyes produced by head tilt with respect to gravity // Acta Otolaryngol. 1962. V. 54. P. 479–501.
  25. Mittelstaedt H. A new solution of the problem of the subjective vertical // Naturwissenschaften 1983. V. 70. P. 272–281.
  26. Mulder M. E. De la rotation compensatoire de l’oeil en cas d’inclinaison а droite ou а gauche de la täte // Arch. d’Ophthal. 1897. V. 17. P. 1–10.
  27. Petrov A. P., Zenkin G. M. Torsional eye movements and constancy of the visual field // Vision Res. 1973. V. 13 P. 2465–2477.
  28. Robinson D. A. A method of measuring eye movements using a scleral search coil in a magnetic field // IEEE Trans. 1963. BME-10. P. 137–145.
  29. Tweed D., Sieverig H., Misslisch H., Fetter M., Zee D., Koenig E. Rotational kinematics of the human vestibuloocular reflex. I. Gain matrices // J Neurophysiol. 1994. V. 7. P. 2467–2479.
  30. Vieville T., Masse D. Ocular counter-rolling during active head tilt in humans // Acta Otolaryngol. 1987. V. 103. P. 280–290.
Статьи по теме:
 
Webometrics
О проекте PsyJournals.ruЛауреат XIV национального психологического конкурса «Золотая Психея» по итогам 2012 года

© 1997–2016 Портал психологических изданий PsyJournals.ru  Все права защищены

Свидетельство регистрации СМИ Эл № ФС77-55675 от 09 октября 2013 г.

Издатель: ФГБОУ ВО МГППУ

Лауреат XIV национального психологического конкурса «Золотая Психея» по итогам 2012 года

RSS-анонсы журналов Psyjournals на facebook Группа Psyjournals Вконтакте Twitter Psyjournals
Яндекс цитирования Яндекс.Метрика