New Generation Software-Only Architecture for Gaze-Contingent Eyetracking Experimentation

0

Abstract

The author shares 10+ years of experience in eyetracking research. Most crucial technicalities are described, different programming approaches are discussed. Network Time Protocol [19] application to data stream synchronization is reviewed separately, which renders phototransistor on-screen sensors partially redundant in some of psychophysics disciplines (known as TTL hardware).

General Information

Keywords: synchronization, NTP protocol, equitemporal, transient motion, perceived simultaneity, motion flicker, PsychoPy

Journal rubric: Psychology of Perception

Article type: scientific article

DOI: https://doi.org/10.17759/exppsy.2024170403

Funding. The reported study was funded by Russian Science Foundation (RSF), project number 24-18-00904.

Received: 14.10.2024

Accepted:

For citation: Zherdev I.Y. New Generation Software-Only Architecture for Gaze-Contingent Eyetracking Experimentation. Eksperimental'naâ psihologiâ = Experimental Psychology (Russia), 2024. Vol. 17, no. 4, pp. 44–59. DOI: 10.17759/exppsy.2024170403. (In Russ., аbstr. in Engl.)

References

  1. Artemenkov S.L., Popkov S.I. Graficheskiy konstruktor eksperimental’nykh protsedur dlya kompiuternogo takhistoskopa. Modelirovanie i analiz dannykh, 2015. No. 1, pp. 41—56. (In Russ.; abstr. in Engl.).
  2. Zherdev I.Yu., Barabanshchikov V.A. Apparatno-programmnyi kompleks dlya issledovaniy zritel’nogo vospriyatiya slozhnykh izobrazheniy vo vremia sakkadicheskikh dvizheniy glaz cheloveka. Eksperimental’naya psikhologiya, 2014. Vol. 7, no. 1, pp. 123—131. (In Russ.; abstr. in Engl.).
  3. Bridges D., Pitiot A., MacAskill M.R., Peirce J.W. The timing mega-study: Comparing a range of experiment generators, both lab-based and online. PeerJ, 2020. Vol. 8, e9414. DOI:10.7717/peerj.9414
  4. Bruchmann M., Thaler K., Vorberg D. Visible persistence of single-transient random dot patterns: Spatial parameters affect the duration of fading percepts. PLoS One, 2015. Vol. 10, no. 9, e0137091. DOI:10.1371/journal.pone.0137091
  5. Elze T. FlashDot - a platform-independent experiment generator for visual psychophysics. Vision, 2009. Vol. 9, no. 14, pp. 58. DOI:10.1167/9.14.58
  6. Elze T. Misspecifications of stimulus presentation durations in experimental psychology: A systematic review of the psychophysics literature. PLoS One, Vol. 5, no. 9, pp. e12792. DOI:10.1371/journal.pone.0012792
  7. Elze T., Tanner T.G. Temporal properties of liquid crystal displays: Implications for vision science experiments. PLoS One, Vol. 7, no. 9, pp. e44048. DOI:10.1371/journal.pone.0044048
  8. Erlikhmann G., Gutentag S., Blair C.D., Caplovitz G.P. Interactions of flicker and motion. Vision Res., Vol. 155, pp. 24—34. DOI:10.1016/j.visres.2018.12.005
  9. Forster K.I., Forster J.C. DMDX: A Windows display program with millisecond accuracy. Res. Meth.: Instr. & Comp., 2003.Vol. 35, no. 1, pp. 116—124. DOI:10.3758/BF03195503
  10. Fukiage T., Nishida Sh. HiddenGazeStereo: Hiding gaze-contingent disparity remapping for 2D-compatible natural 3D viewing. IEEE Access, 2022. Vol. 10, pp. 94778—94796. DOI:10.1109/ACCESS.2022.3204874
  11. Garaizar P., Vadillo M.A. Accuracy and precision of visual stimulus timing in PsychoPy: No timing errors in standard usage. PLoS One, 2014. Vol. 9, no. 11, e112033. DOI:10.1371/journal.pone.0112033
  12. Green M. Psychophysical relationships among mechanisms sensitive to pattern, emotion and flicker. Vision Res., Vol. 21, pp. 971—983. DOI:10.1016/0042-6989(81)90001-8
  13. Ibbotson M.R., Cloherty S.L. Visual perception: Saccadic omission - suppression or temporal masking. Biol., 2009. Vol. 19, no.12, pp. 493—496. DOI:10.1016/j.cub.2009.05.010
  14. Kim J., Yoshida T. Sense of agency at a gaze-contingent display with jittery temporal delay. Frontiers Psychol., 2024. Vol. 15. DOI:10.3389/fpsyg.2024.1364076
  15. Legge G. Sustained and transient mechanisms in human vision: temporal and spatial properties. Vision Res., Vol. 18, pp. 69—82. DOI:10.1016/0042-6989(78)90079-2
  16. Lichtenauer J., Shen J., Valstar M., Pantic M. Cost-effective solution to synchronized audio-visual data capture using multiple sensors. Image and Vision Computing, 2011. Vol. 29, no.10, pp. 666—680. DOI:10.1016/j.imavis.2011.07.004
  17. Matin L. Critical duration, the difference luminance threshold, critical frequency flicker, and visual adaptation: A theoretical treatment. Opt. Soc. Am., 1968. Vol. 58, pp. 404—415. DOI:10.1364/JOSA.58.000404
  18. Matin L., Bowen R.W. Measuring the duration of perception. & Psychophys., 1976. Vol. 20, no.1, pp. 66—76. DOI:10.3758/BF03198708
  19. Mills D.L. Computer network time synchronization: The Network Time Protocol. Taylor & Francis, 2006. 282 p.
  20. Nyström M., Niehorster D., Cornelissen T., Garde H. Real-time sharing of gaze data between multiple eye trackers - evaluation, tools, and advice. Res. Meth., 2017. Vol. 49, pp. 1310—1322. DOI:10.3758/s13428-016-0806-1
  21. Peirce J.W., Gray J.R., Simpson S., et al. PsychoPy2: Experiments in behavior made easy. Res. Meth., 2019. Vol. 51, pp. 195—203. DOI:10.3758/s13428-018-01193-y
  22. de Pisapia N., Kaunitz L., Melcher D. Backward masking and unmasking across saccadic eye movements. Biol., 2010. Vol. 20, no. 7, pp. 613—617. DOI:10.1016/j.cub.2010.01.056
  23. Poth C.H., Foerster R.M., Behler C., et al. Ultrahigh temporal resolution of visual presentation using gaming monitors and G-Sync. Res. Meth., 2018. Vol. 50, pp. 26—38. DOI:10.3758/s13428-017-1003-6
  24. Roberts J.E., Wilkins A.J. Flicker can be perceived during saccades at frequencies in excess of 1 kHz. Lighting Res. Technol., Vol. 45, pp. 124—132. DOI:10.1177/1477153512436367
  25. Rovamo J., Raninen A. Critical flicker frequency and M-scaling of stimulus size and retinal illuminance. Vision Res., 1984. Vol. 24, no. 10, 1127—1131. DOI:10.1016/0042-6989(84)90166-4
  26. Saunders D.R., Woods R.L. Direct measurement of the system latency of gaze-contingent displays. Res. Meth., 2014. Vol. 46, no. 2, pp. 439—447. DOI:10.3758/s13428-013-0375-5
  27. Schubert T.W., D’Ausilio A., Canto R. Using Arduino microcontroller boards to measure response latencies. Res. Meth., 2013. Vol. 45, pp. 1332—1346. DOI:10.3758/s13428-013-0336-z
  28. Sperdin H.F., Spierer L., Becker R., et al. Submillisecond unmasked subliminal visual stimuli evoke electrical brain responses. Brain Mapping, 2015. Vol. 36, pp. 1470—1483. DOI:10.1002/hbm.22716
  29. Waldin N., Waldner M., Viola I. Flicker observer effect: Guiding attention through high frequency flicker in images. Computer Graphics Forum, Vol. 36, Iss. 2, pp. 467—476. DOI:10.1111/cgf.13141

Information About the Authors

Ivan Y. Zherdev, associated researcher, software developer, Moscow State University of Psychology & Education, Moscow, Russia, ORCID: https://orcid.org/0000-0001-6810-9297, e-mail: ivan866@mail.ru

Metrics

Views

Total: 3
Previous month: 3
Current month: 0

Downloads

Total: 0
Previous month: 0
Current month: 0