Perception of Virtual Stereo Objects: Spatial Perceptual Effects Caused by The Peculiarities in Interaction of Visual Mechanisms



The purpose of our study was investigation of the peculiarities of human visual perception in virtual environment created on the basis of stereo technologies. The participants were 100 adults aged from 17 to 79 years (40 males and 60 females, average age 32,9 years). Observation of virtual stereo objects was provided by computer software “Fusion” created for measuring visual fusion reserves which characterize the quality of binocular mechanisms of stereo perception. Test stimuli were random dot stereograms (RDSs) encoding a square test object moving from the screen to the observer. Separate presentation of the stimuli to the left and right eyes was based on the opposite circular polarization method. The participant’s task was to observe virtual stereo objects and describe perceived vi- sual images: their sizes, positions in depth and directions of movement. It has been found that, in conditions of view- ing the same virtual stereo objects, the participants with normally functioning mechanisms of binocular stereopsis could perceive quite different stereo images. On the basis of the perceived stereo image parameters, all participants were divided into four types. The described phenomena and the identified typology of spatial perceptual stereo effects could be considered as the consequences of restructuring interaction of visual sensory, accommodative and oculo-motor mechanisms involved in visible image formation when adapting to a virtual environment.

General Information

Keywords: virtual reality, stereo technologies, visual perception, stereo image, visual mechanisms, spatial perceptual effects

Journal rubric: Psychology of Perception

Article type: scientific article


Acknowledgements. The authors are grateful for the technical assistance and useful comments on the manuscript to M.A. Gracheva, a senior researcher at Kharkevich Institute.

For citation: Vasilyeva N.N., Rozhkova G.I. Perception of Virtual Stereo Objects: Spatial Perceptual Effects Caused by The Peculiarities in Interaction of Visual Mechanisms. Eksperimental'naâ psihologiâ = Experimental Psychology (Russia), 2021. Vol. 14, no. 3, pp. 79–90. DOI: 10.17759/exppsy.2021140306. (In Russ., аbstr. in Engl.)


  1. Barabanschikov V.A. Obshchaya psihologiya: psihologiya vospriyatiya [General Psychology: Psychology of Perception]. Moscow: Yurayt Publ., 2020. 184 p. (In Russ.).
  2. Bol’shakov A.S., Rozhkova G.I. Interaktivnaja testovaja programma dlja otsenki sostoyanija i trenirovki fuzionnykh mekhanizmov binokulyarnogo zreniya FUSIJA. Svidetel’stvo o gosudarstvennoj registracii programmy dlja EVM [Interactive test program for assessing the condition and training of fusion mechanisms of binocular vision Fusion. Certificate of state registration of the program for EVM]. № 2013610975 09.01.2013. (In Russ.).
  3. Bonch-Osmolovskij A.M., Petrov A.P. Modeli i algoritmy stereosinteza [Stereo synthesis models and algorithms]. Moscow: In-t atom. energiiim. I.V. Kurchatova, 1983. 76 p. (In Russ.).
  4. Velichkovsky B.B. et al. Kognitivnyj kontrol’ i chuvstvo prisutstviya v virtual’nyh sredah [Cognitive control and a sense of presence in virtual environments]. Experimentalnaja Psikhologija = Experimental Psychology, 2016. Vol. 9, no.1, pp. 5—20. DOI: 10.17759/exppsy.2016090102. (In Russ.; abstr. in Engl.)
  5. Ermolaev O.Yu. Matematicheskaya statistika dlya psikhologov [Math statistics for psychologists]. Moscow: FLINT, 2019. 336 p. (In Russ.).
  6. Kovyazina M.S. et al. Innovacionnye instrumental’nye tekhnologii v sisteme kliniko-psikhologicheskoj diagnostiki i reabilitacii [Innovative Instrumental Technologies in the System of Clinical and Psychological Diagnosis and Rehabilitation]. Vestnik RFFI= Russian Foundation for Basic Research, 2019. no. 4 (104), pp. 23—30. DOI: 10.22204/2410-4639-2019-104-04-23-30. (In Russ.).
  7. Rozhkova G.I. Binokulyarnoe zrenie [Binocular vision]. In Byzov A.L. (ed.), Fiziologiya zreniya [Visual physiology]. Moscow: Nauka, 1992, pp. 586—664. (In Russ.).
  8. Rozhkova G.I. Sluchajno-tochechnye stereogrammy: unikal’nye instrumenty dlya izucheniya, otsenki i trenirovki binokulyarnyh mekhanizmov vospriyatiya glubiny [Random-dot stereograms: the unique tools for studying, testing and training brain mechanisms of binocular depth perception]. Mir tekhniki kino = World of technique of cinema, 2016. Vol. 4 (10), pp. 7—13. (In Russ.).
  9. Selivanov V.V., Pobokin P.A., Babieva N.S. Vliyanie obrazovatel’nyh i treningovyh programm v virtual’noj real’nosti na lichnostnye kharakteristiki ispytuemyh [The impact of the educational and training programs in virtual reality on personal characteristics of the subjects]. Psihologiya obucheniya = Educational psychology, 2019. no. 1, pp. 18—28.(In Russ.).
  10. Sudakov K.V. Sistemnaya organizaciya psikhicheskoj deyatel’nosti [System organization of mental activity]. Psikhologicheskij zhurnal= Psychology journal, 2013. Vol. 34, no. 6, pp. 72—81. (In Russ.).
  11. Astur R.S. et al. Sex differences and correlations in a virtual Morris water task, a virtual radial arm maze, and mental rotation. Behavioural brain research, 2004. Vol. 151, Issue 1—2, pp. 103—115. DOI: 10.1016/j.bbr.2003.08.024
  12. Blake R., Fox R. The psychophysical inquiry into binocular summation. Jbid, 1973. Vol. 14, pp. 161—185.
  13. Banks M.S. et al. 3D Displays // Annual review of vision science. 2016. Vol. 2. P. 397—435.
  14. Hands P., Smulders T.V., Read J. Stereoscopic 3-D content appears relatively veridical when viewed from an oblique angle. J. Vis, 2015. Vol. 15 (5), no. 6, pp. 1—21.
  15. Hibbard P.B., Haines A.E., Hornsey R.L. Magnitude, precision, and realism of depth perception in stereoscopic vision. Cogn. research, 2017. Vol. 2, no. 25. DOI:10.1186/s41235-017-0062-7
  16. Howard I.P., Rogers B.J. Perceiving in depth. Vol. 2. Stereoscopic vision, Oxford: Oxford University Press, 2012. 635 p.
  17. Julesz B. Foundations of cyclopean perception. Chicago: Univ. Chicago Press,1971. 406 p.
  18. Menshikova G.Ya. et al. Gender differences in interactions with avatars of diverse ethnic appearances. Psychology in Russia: State of the Art, 2018. Vol. 11, Issue 4. DOI: 10.11621/pir.2018.0414.
  19. Nori R. et al. The virtual reality Walking Corsi Test. Computers in human behavior, 2015. Vol. 48, pp. 72—77. DOI: 10.1016/j.chb.2015.01.035
  20. Rogers B. Perception: a very short introduction. OUP Oxford University press, 2017. 162 p.
  21. Tyler C.W. An accelerated cue combination principle accounts for multi-cue depth perception. Journal of perceptual imaging. Society for imaging science and technology, 2020. Vol. 3 (1): 010501-1-010501-9. DOI: 10.2352/J.Percept.Imaging.2020.3.1.010501
  22. Uji M. et al. Identifying cortical substrates underlying the phenomenology of stereopsis and realness: A pilot fMRI study. Front. Neurosci, 2019. Vol. 13:646. DOI: 10.3389/fnins.2019.00646
  23. Westheimer G. Three-dimensional displays and stereo vision. Proc. R. Soc. B, 2011. Vol. 278, pp. 2241— 2248. DOI: 10.1098/rspb.2010.2777

Information About the Authors

Nadezhda N. Vasilyeva, Doctor of Biology, Assistant Professor, Leading Researcher, Vision Systems Laboratory, Institute for Information Transmission Problems, Russian Academy of Sciences (Kharkevich Institute), Moscow, Russia, ORCID:, e-mail:

Galina I. Rozhkova, Doctor of Biology, Professor, Principal Researcher, Vision Systems Laboratory, Institute for Information Transmission Problems, Russian Academy of Sciences (Kharkevich Institute), Moscow, Russia, ORCID:, e-mail:



Total: 456
Previous month: 19
Current month: 15


Total: 192
Previous month: 3
Current month: 9