Optimization of Signal Processing Parameters in Psychophysiological Studies on the Example of GSR and PPG



When analyzing physiological signals, the problem of setting data processing parameters arises due to the blurring of the boundary between signal and noise properties, as well as the fundamental lack of objective criteria for the quality of data processing in psychophysiology. This paper describes an approach to optimizing processing parameters on the example of galvanic skin response (GSR) and photoplethysmogram (PPG), based on the use of stimuli that are significant for a person, selected on the basis of biographical data, which can be considered as criteria validation. As a metric for the optimization, we used the frequency of coincidence of the stimuli identified as a result of the analysis with the a priori given ones (human names, including the name of the volunteer, and also visit cards selected by the volunteer). GSR and PPG signals were recorded using an MRI-compatible polygraph under conditions of functional magnetic resonance imaging (N=46 volunteers). In the first part of the work, optimization of frequency filters and analysis intervals (epochs) was performed. It has been established that the following processing parameters are optimal for analyzing the amplitude properties of the GSR signal: first-order Butterworth filters, frequency range is 0.025-0.25 Hz, interval of analysisis1-7 s from a stimulus. To analyze the PPG signal using the length of the curve, the following processing parameters are optimal: second-order Butterworth filters, frequency range is 1.25—12.5 Hz, interval of analysis is 3—10 s from a stimulus. Using the same criterion, several alternative signal processing methods were tested: change in the amplitude of the GSR signal over the analysis interval compared to the classical method by the amplitude maximum relative to the baseline; several types of ranking of reactions within a block of stimuli compared to simple averaging of all responses. The parameters and methods of processing of the GSR and PPG signals obtained in the work demonstrate universality in relation to the variety of initial data and could be applicable in applied and fundamental research. The general approach described in the work can also be used to optimize the processing parameters of other physiological signals including fMRI.

General Information

Keywords: subjective significance, subjectively meaningful stimuli, galvanic skin response, photoplethysmogram, polygraph, fMRI, MRIcP, neurocognitive processes, neural networks, information concealment, forensic psychophysiology, neuro-forensics

Journal rubric: Psychophysiology

Article type: scientific article

DOI: https://doi.org/10.17759/exppsy.2023160104

Received: 02.12.2022


For citation: Malakhov D.G., Orlov V.A., Kartashov S.I., Skiteva L.I., Kovalchuk M.V., Alexandrov Y.I., Kholodny Y.I. Optimization of Signal Processing Parameters in Psychophysiological Studies on the Example of GSR and PPG. Eksperimental'naâ psihologiâ = Experimental Psychology (Russia), 2023. Vol. 16, no. 1, pp. 62–86. DOI: 10.17759/exppsy.2023160104. (In Russ., аbstr. in Engl.)


  1. Burlachuk L.F. Psikhodiagnostika: Uchebnik dlya vuzov [Psychodiagnostics: Textbook for universities]. SPb: Piter, 2006. 351 p. (In Russ.).
  2. Zakharova N.V., Koval'chuk M.V., Kostyuk G.P., Bravve L.V., Kaidan M.A., Kartashov S.I., Malakhov D.G., Kholodnyi Yu.I. Vozmozhnosti prikladnogo ispol'zovaniya poligrafa dlya izucheniya negativnoi simptomatiki bol'nykh paranoidnoi shizofreniei [Possibilities of applied use of the polygraph to study the negative symptoms of patients with paranoid schizophrenia]. Psikhicheskoe zdorov'e [Mental health]. 2019. Vol. 12, pp. 50—60. DOI:10.25557/2074-014X.2019.12.50-60 (In Russ.).
  3. Ivanov R.S. Znachimost' stimula v situatsii psikhofiziologicheskogo issledovaniya s primeneniem poligrafa [The significance of the stimulus in the situation of psychophysiological research using a polygraph]. Vestnik psikhofiziologii [Bulletin of Psychophysiology]. No. 2, pp. 19—30. (In Russ.).
  4. Ivanov R.S. Individual'nyi simptomokompleks kak instrument interpretatsii rezul'tatov psikhofiziologicheskogo issledovaniya s primeneniem poligrafa [Individual symptom complex as a tool for interpreting the results of a psychophysiological study using a polygraph]. Natsional'nyi psikhologicheskii zhurnal [National Psychological Journal]. 2014. Vol. 3, no. 15, pp. 90—97. DOI:10.11621/npj.2014.0311 (In Russ.).
  5. Kalafati A.Yu. Issledovanie dliny linii FPG i dykhaniya dlya razlichnykh diapazonov otsenki [Study of PPG and respiration curve length for different assessment ranges]. Detektsiya lzhi [Lie detection]. Vol. 4, pp. 33—40. (In Russ.).
  6. Signal receiving and processing devices [Signal receiving and processing devices]. Moscow: Hotline-Telecom, 2007. (In Russ.).
  7. Malakhov D.G., Kholodnyi Yu.I. Sistema odnovremennogo kontrolya i otsenki dinamiki fiziologicheskikh protsessov v usloviyakh provedeniya magnitno-rezonansnoi tomografii cheloveka [System for Simultaneous Control and Evaluation of the Dynamics of Physiological Processes in the Conditions of Human Magnetic Resonance Imaging]. Patent № RU2756566C1. (In Russ.).
  8. Nikolenko S.I., Kadurin A.A., Arkhangel'skaya E.O. Glubokoe obuchenie [Deep Learning]. SPb.:Piter, 2019. 480 p. (In Russ.).
  9. Kholodnyi Yu.I., Malakhov D.G., Orlov V.A., Kartashov S.I., Aleksandrov Yu.I., Koval'chuk M.V. Izuchenie neirokognitivnykh protsessov v paradigm sokrytiya informatsii [Study of neurocognitive processes in a paradigm of information concealment]. Eksperimental’naya psikhologiya [Experimental Psychology (Moscow)], 2021. Vol. 14, no. 3, pp. 17—39. DOI:10.17759/exppsy.2021140302 (In Russ.).
  10. Alexandrov Y. I. How we fragment the world: the view from inside versus the view from outside. Social Science Information, Vol. 47, no. 3, pp. 419—457. DOI:10.1177/0539018408092580
  11. Bach D.R., Flandin G., Friston K.J., Dolan R.J. Modelling event-related skin conductance responses. J. Psychophysiol., 2010. Vol. 75, pp. 349—356. DOI:10.1016/j.ijpsycho.2010.01.005
  12. Bach D.R., Flandin G., Friston K.J., Dolan R.J. Time-series analysis for rapid event-related skin conductance responses. Neurosci. Methods,2009. Vol. 184, pp. 224—234. DOI:10.1016/j.jneumeth.2009.08.005
  13. Bach D.R., Friston K.J., Dolan R.J. An improved algorithm for model-based analysis of evoked skin conductance responses. Psychol., 2013. Vol. 94, pp. 490—497. DOI:10.1016/j.biopsycho.2013.09.010
  14. Bach D.R. A head-to-head comparison of SCRalyze and Ledalab, two model-based methods for skin conductance analysis. Psychol., 2014. Vol. 103, pp. 63—68. DOI:10.1016/j.biopsycho.2014.08.006
  15. Barzegaran E. EEGSourceSim: A framework for realistic simulation of EEG scalp data using MRI-based forward models and biologically plausible signals and noise. J Neurosci Methods, Vol. 108, pp. 328—377. DOI:10.1016/j.jneumeth.2019.108377
  16. Council N.R. The polygraph and lie detection. Washington: The National Academy Press, 2003. P. 314. DOI:10.17226/10420
  17. Dawson M.E., Schell A.M., Filion D.L. The electrodermal system. In: J.T. Cacioppo, L.G. Tassinary, G.G. Berntson (Eds.). Handbook of psychophysiology. Cambridge University Press, 2007. P. 159—181. DOI:10.1017/CBO9780511546396.007
  18. Department of Defense, D.C. The accuracy and utility of polygraph testing. Washington, D.C.: Natioflal Institute of Justice, United States Department of Justice. 1984. Vol. 13, p. 54.
  19. Elaad E., Ben-Shakhar G. Covert respiration measures for the detection of concealed information. Biological Psychology,2008. Vol. 77, no. 3, pp. 284—291. DOI:10.1016/j.biopsycho.2007.11.001
  20. Elaad E., Ben-Shakhar G. Finger pulse waveform length in the detection of concealed information. International Journal of Psychophysiology, Vol. 61, pp. 226—234. DOI:10.1016/j.ijpsycho.2005.10.005
  21. Kalafati A., Krapohl D.J. The difference between the manual and automatic settings for the electrodermal channel and a potential effect on manual scoring. Polygraph & Forensic Сredibility Assessment: A Journal of Science and Field Practice, 2018. Vol. 47, no. 1, pp. 37—44.
  22. Kovalchuk M.V., Kholodny Y.I. Functional magnetic resonance imaging augmented with polygraph: new capabilities. Biologically Inspired Cognitive Architectures 2019. BICA 2019. Advances in Intelligent Systems and Computing. Vol. 948. P. 260—265. DOI:10.1007/978-3-030-25719-4_33
  23. Orlov V., Kartashov S., Malakhov D., Kovalchuk M., Kholodny Y. Evaluation of fMRI Data at the Individual Level.Biologically Inspired Cognitive Architectures 2021. BICA 2021. Studies in Computational Intelligence. Vol. 1032. DOI:10.1007/978-3-030-96993-6_42
  24. Posada-Quintero H.F., Florian J.P., Orjuela-Cañón A.D., Aljama-Corrales T., Charleston-Villalobos S., Chon K.H. Power Spectral Density Analysis of Electrodermal Activity for Sympathetic Function Assessment. Biomed. Eng., 2016. Vol. 44, pp. 3124—3135. DOI:10.1007/s10439-016-1606-6
  25. Reguig M., Reguig F. Photoplethysmogram signal processing and analysis in evaluating arterial stiffness.International Journal of Biomedical Engineering and Technology, 2017. Vol. 23. DOI:10.1504/IJBET.2017.10003507
  26. Tronstad C., Staal O.M., Saelid S., Martinsen O.G. Model-based filtering for artifact and noise suppression with state estimation for electrodermal activity measurements in real time. Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2015. DOI:10.1109/EMBC.2015.7318961
  27. Vandenbosch K., Verschuere B., Crombez G., DeClercq A. The validity of finger pulse line length for the detection of concealed information. International Journal of Psychophysiology, 2009. Vol. 71, no. 2, pp. 118—123. DOI:10.1016/j.ijpsycho.2008.07.015
  28. Anaconda [Computer software]. URL: www.anaconda.com (Accessed: 12.11.2022).
  29. JASP Team. JASP (Version 0.14.1) [Computer software, 2020]. URL: https://jasp-stats.org/ (Accessed: 12.11.2022).
  30. Octave [Computer software]. URL: www.octave.org (Accessed: 12.11.2022).
  31. TINA-TI [Computer software].URL: www.tina.com (Accessed: 12.11.2022).

Information About the Authors

Denis G. Malakhov, Research Associate, National Research Center “Kurchatov Institute”, Moscow, Russia, ORCID: https://orcid.org/0000-0002-7073-374X, e-mail: malakhov_dg@nrcki.ru

Vyacheslav A. Orlov, Senior Research Associate, National Research Center “Kurchatov Institute”, Moscow, Russia, ORCID: https://orcid.org/0000-0002-4840-4499, e-mail: ptica89@bk.ru

Sergey I. Kartashov, Acting Deputy Manager of Laboratory of Experimental and Applied Psychophysiology, National Research Center “Kurchatov Institute”, Moscow, Russia, ORCID: https://orcid.org/0000-0002-0181-3391, e-mail: kartashov_si@nrcki.ru

Lyudmila I. Skiteva, Research Engineer, National Research Center “Kurchatov Institute”, Moscow, Russia, ORCID: https://orcid.org/0000-0003-2547-3026, e-mail: skiteva_li@nrcki.ru

Mikhail V. Kovalchuk, Professor, President, National Research Center “Kurchatov Institute”, Moscow, Russia, ORCID: https://orcid.org/0000-0001-8255-7993, e-mail: koval@nrcki.ru

Yuri I. Alexandrov, Doctor of Psychology, Head the Laboratory of the Institute of Psychology RAS and Head. the Department of Psychophysiology State University of Humanitarian Sciences, Institute of Psychology Russian Academy of Science, head Laboratory of Neurocognitive Research of Individual Experience, Moscow State Psychological and Pedagogical University (FSBEI HE MGPPU), Corresponding Member of the Russian Academy of Education. Member of the editorial board of the scientific journal "Experimental Psychology", Moscow, Russia, ORCID: https://orcid.org/0000-0002-2644-3016, e-mail: yuraalexandrov@yandex.ru

Yuri I. Kholodny, Doctor of Law, Senior Research Associate, Manager of Laboratory of Experimental and Applied Psychophysiology, National Research Center “Kurchatov Institute”, Moscow, Russia, ORCID: https://orcid.org/0000-0001-5201-519X, e-mail: kholodny@yandex.ru



Total: 624
Previous month: 37
Current month: 9


Total: 185
Previous month: 12
Current month: 9