Perception of Length and Direction in Wave Motion



It is known that changes in the functioning of the vestibular system affect visual perception. We studied the effect of gravitoinertial impact on the sensorimotor assessment of the length and direction of segments of different orientations by the leading hand before and during the wave motion (n = 6) in comparison with the control group (n = 22). At the memorization stage, the subjects moved their leading hand along a visible segment located at different angles to the horizontal on the center of the touchscreen, and at the reproduction stage they repeated this movement in the same place on an empty screen. In both groups, when memorizing, the error in estimating the length and direction of segments was small and had no pronounced dynamics; during reproduction, a motor oblique effect was obtained, that is repulsion of segments of oblique directions from the canonical axes, vertical and horizontal. During wave motion, the length of the segment began to be estimated less accurately (movements became more hypermetric). This error pattern supports the vector encoding hypothesis, in which the direction and length of the planned movement are encoded independently of each other. Moreover, the gravitoinertial effect selectively affects the accuracy of length coding, and not the coding of the direction of movement of the leading hand.

General Information

Keywords: wave motion, motor oblique effect, vector coding

Journal rubric: Psychology of Perception

Article type: scientific article


Funding. The work of V.A.L. and V.Yu.K. supported by a grant from the Russian Science Foundation “Psychological mechanisms of mismatch between perception and action in solving problems under conditions of visual illusions”. Project number 22-18-00074.

Acknowledgements. The authors are grateful to P.A. Safonov for information about the features of wave motion in the northeast of Lake Ladoga.

Received: 12.10.2023


For citation: Lyakhovetsky V.A., Skotnikova I.G., Karpinskaya V.Y. Perception of Length and Direction in Wave Motion. Eksperimental'naâ psihologiâ = Experimental Psychology (Russia), 2024. Vol. 17, no. 1, pp. 4–16. DOI: 10.17759/exppsy.2024170101. (In Russ., аbstr. in Engl.)


  1. Appelle S. Perception and discrimination as a function of stimulus orientation: The “oblique effect” in man and animals. Psychological Bulletin, 1972. Vol. 78, 4, pp. 266—278.
  2. Avraham G., Sulimani E., Mussa-Ivaldi F.A., Nisky I. Effects of visuomotor delays on the control of movement and on perceptual localization in the presence and absence of visual targets. Neurophysiol., 2019. Vol. 122, pp. 2259—2271.
  3. Baroun K.A., Al-Ansari B.M. The impact of anxiety and gender on perceiving the Mueller-Lyer illusion. Social Behavior and Personality: an international journal, 2005. Vol. 33, no. 1, pp. 33—42.
  4. Baud-Bovy G., Viviani P. Amplitude and direction errors in kinesthetic pointing. Brain Res., 2004. Vol. 157, pp. 197—214.
  5. Bernard-Espina J., Dal Canto D., Beraneck M., McIntyre J., Tagliabue M. How tilting the head interferes with eye-hand coordination: the role of gravity in visuo-proprioceptive, cross-modal sensory transformations. Integr. Neurosci., 2022. Vol. 16, p. 788905.
  6. Bertolini G., Straumann D. Moving in a moving world: a review on vestibular motion sickness. Neurol., 2016. Vol. 7, pp. 14.
  7. Bos J.E. Less sickness with more motion and/or mental distraction. Vestib. Res., 2015. Vol. 25, no.1, pp. 23—33.
  8. Brabyn L B., McGuinness D. Gender differences in response to spatial frequency and stimulus orientation. Perception & Psychophysics, 1979. Vol. 26, 4, pp. 319—324.
  9. Brosvic G.M., Dihoff R.E., Fama J. Age-related susceptibility to the Müller-Lyer and the horizontal-vertical illusions. Perceptual and motor skills, 2002. Vol. 94, 1, pp. 229—234.
  10. Clément G., Fraysse M.J., Deguine O. Mental representation of space in vestibular patients with otolithic or rotatory vertigo. Neuroreport, 2009. Vol. 20, 5, pp. 457—461.
  11. Clément G., Skinner A., Richard G., Lathan C. Geometric illusions in astronauts during long-duration spaceflight. Neuroreport, Vol. 23, no. 15, pp. 894—899.
  12. Crawford L.E., Huttenlocher J., Engebretson P.H. Category effects on estimates of stimuli: Perception or reconstruction? Sci., 2000. Vol. 11, no. 4, pp. 280—284.
  13. Desmurget M., Grafton S.T., Vindras P., Gréa H., Turner R.S. Basal ganglia network mediates the control of movement amplitude. Exp Brain Res., 2003. Vol. 153, 2, pp. 197—209.
  14. Duncan C.A., Bishop N., Komisar V., MacKinnon S.N., Byrne J.M. The effect of wave motion intensities on performance in a simulated search and rescue task and the concurrent demands of maintaining balance. Hum Factors, Vol. 64, no. 3, pp. 579—588.
  15. Ellis R.R., Flanagan J.R., Lederman S.J. The influence of visual illusions on grasp position. Exp Brain Res., 1999. Vol. 125, 2, pp. 109—114.
  16. Gentilucci M., Chieffi S., Daprati E., Cristina Saetti M., Toni I. Visual illusion and action. Neuropsychologia, Vol. 34, pp. 369—376.
  17. Goodale M.A., Milner A.D. Separate visual pathways for perception and action. TrendsNeurosci., Vol. 15, no. 1, pp. 20—25.
  18. Gordon J., Ghilardi M.F., Ghez C. Accuracy of planar reaching movements. I. Independence of direction and extent variability. Exp Brain Res., 1994. Vol. 99, 1, pp. 97—111.
  19. Hudson T.E., Landy M.S. Motor learning reveals the existence of multiple codes for movement planning. Neurophysiol., 2012. Vol. 108, pp. 2708—2716.
  20. Imanaka K., Abernethy B. Interference between location and distance information in motor short-term memory: the respective roles of direct kinesthetic signals and abstract codes. J Mot Behav., Vol. 24, no. 3, pp. 274—280.
  21. Kim H.E., Avraham G., Ivry R.B. The psychology of reaching: action selection, movement implementation, and sensorimotor learning. Rev. Psychol., 2021. Vol. 72, pp. 61—95.
  22. Kornilova L.N., Naumov I.A., Mazuenko A.Ju., Kozlovskaya I.B. Zritel'no-manual'noye slezheniye i vestibulyarnaya funktsiya v usloviyakh 7-sutochnoy “sukhoy” immersii [Visual-manual tracking and vestibular function during 7-day dry immersion]. Aviakosmicheskaya i Ecologicheskaya Meditsina [Aerospace and Environmental Medicine (Russia)], 2008. Vol. 42, no 5, pp. 8—13. (In Russ.; abstract in Engl.).
  23. Krakauer J.W., Pine Z.M., Ghilardi M.F., Ghez C. Learning of visuomotor transformations for vectorial planning of reaching trajectories. Neurosci., 2000. Vol. 20, pp. 8916—8924.
  24. Lathan C., Wang Z., Clément G. Changes in the vertical size of a three-dimensional object drawn in weightlessness by astronauts. Neurosci Lett., 2000. Vol. 295, no. 1—2, 37—40.
  25. Lipshits M., McIntyre J. Gravity affects the preferred vertical and horizontal in visual perception of orientation. Neuroreport, Vol. 10, pp. 1085—1089.
  26. Lipshits M., McIntyre J., Zaoui M., Gurfinkel V., Berthoz A. Does gravity play an essential role in the asymmetrical visual perception of vertical and horizontal line length? Acta Astronaut., Vol. 49, pp. 123—130.
  27. Lyakhovetskii V.A., Bobrova E.V. Vosproizvedeniye zapomnennoy posledovatel'nosti dvizheniy pravoy i levoy ruki: pozitsionnoye i vektornoye kodirovaniye [Sequence acquisition by the right and the left hands: positional and vector coding]. Zhurnal Vysshey nervnoy deyatel'nosti [ of Higher Nervous Activity], 2009. Vol. 59, no. 1, pp. 45—54. (In Russ.; abstract in Engl.).
  28. Lyakhovetskii V.A., Sosnina I.S., Zelenskiy K.A., Karpinskaya V.Ju., Tomilovskaya E.S. Vliyaniye 21-sutochnoy «sukhoy» immersii na sensomotornuyu otsenku illyuziy Ponzo i Myuller-Layyera pri skhvatyvanii [Effect of 21-day dry immersion on the sensorimotor evaluation of the Ponzo and Muller-Lyer illusions during grasping]. Aviakosmicheskaya i Ecologicheskaya Meditsina [Aerospace and Environmental Medicine (Russia)], 2020. Vol. 54, no. 4, pp. 58—63. (In Russ.; abstract in Engl.).
  29. Lyakhovetskii V.A., Zelenskaya I.S., Karpinskaya V.Ju., Bekreneva M.P., Zelenskiy K.A., Tomilovskaya E.S. Influence of Dry Immersion on the characteristics of cyclic precise hand movements. Human Physiology, 2022. Vol. 48, no. 6, pp. 655—661.
  30. Lyakhovetskii V., Chetverikov A., Zelenskaya I., Tomilovskaya E., Karpinskaia V. Perception of length and orientation in dry immersion. Neural Circuits, 2023. Vol. 17, p. 1157228.
  31. McIntyre J., Lipshits M. Central processes amplify and transform anisotropies of the visual system in a test of visual-haptic coordination. J Neurosci., Vol. 28, no. 5, pp. 1246—1261.
  32. Nakanishi M., Usuba H., Miyashita H. Effects of Delboeuf illusion on pointing performance. Proceedings of the 31st Australian Conference on Human-Computer-Interaction (Fremantle, WA, Australia, 2-5 Dec. 2019). NY, USA: ACM, 2019. Pp. 476—479.
  33. Pantes G., Mantas A., Evdokimidis I., Smyrnis N. Memory pointing in children and adults: dissociations in the maturation of spatial and temporal movement parameters. Brain Res., 2009. Vol. 196, pp. 319—328.
  34. Prablanc C., Echallier J.F., Komilis E., Jeannerod M. Optimal response of eye and hand motor systems in pointing at a visual target. I. Spatio-temporal characteristics of eye and hand movements and their relationships when varying the amount of visual information. BiolCybern., 1979. Vol. 35, 2, pp. 113—124.
  35. Shaqiri A., Roinishvili M., Grzeczkowski L., Chkonia E., Pilz K., Mohr C., Brand A., Kunchulia M., Herzog M.H. Sex-related differences in vision are heterogeneous. Scientific reports, 2018. Vol. 8, 7521.
  36. Smith P.F. Recent developments in the understanding of the interactions between the vestibular system, memory, the hippocampus, and the striatum. Neurol., 2022. Vol. 13, p. 986302.
  37. Smyrnis N., Mantas A., Evdokimidis I. "Motor oblique effect": perceptual direction discrimination and pointing to memorized visual targets share the same preference for cardinal orientations. Neurophysiol., 2007. Vol. 97, pp. 1068—1077.
  38. Sosnina I.S., Lyakhovetskii V.A., Zelenskiy K.A., Karpinskaya V.Yu., Tomilovskaya E.S. Effects of five-day “Dry” immersion on the strength of the Ponzo and the Müller-Lyerillusions. Neuroscience and Behavioral Physiology, 2019.Vol. 49, no. 7, pp. 847—856.
  39. Sosnina I.S., Lyakhovetskii V.A., Zelenskiy K.A., Shoshina I.I., KarpinskayaV.Ju., Tomilovskaya E.S. The effect of a 21-day Dry Immersion on Ponzo and Muller-Lyerillusions. Human Physiology, 2021. Vol. 47, no. 1, pp. 51—59.
  40. Tschopp-Junker C., Gentaz E., Viviani P. Effect of selective and distributed training on visual identification of orientation. Exp Brain Res., 2010. Vol. 202, 3, pp. 605—611.
  41. Villard E., Garcia-Moreno F.T., Peter N., Clément G. Geometric visual illusions in microgravity during parabolic flight. Neuroreport, Vol. 16, no. 12, pp. 1395—1398.
  42. Vindras P., Viviani P. Frames of reference and control parameters in visuomanual pointing. Exp. Psychol. Hum. Percept. Perform., 1998. Vol. 24, pp. 569—591.
  43. Wei X.-X., Stocker A.A. Lawful relation between perceptual bias and discriminability. PNAS, Vol. 114, no. 38, pp. 10244—10249.
  44. Yu Y., Yank J.R., Katsumata Y., Villard S., Kennedy R.S., Stoffregen T.A. Visual vigilance performance and standing posture at sea. Aviat Space Environ Med, 2010. Vol. 81, 4, pp. 375—382.
  45. van der Graaff M.C., Brenner E., Smeets J.B. Vector and position coding in goal-directed movements. Brain Res., 2017. Vol. 235, pp. 681—689.
  46. van Donkelaar P. Pointing movements are affected by size-contrast illusions. BrainRes., 1999. Vol. 125, no. 4, pp. 517—520.

Information About the Authors

Vsevolod A. Lyakhovetsky, PhD in Engineering, Researcher, Saint-Petersburg State University, St.Petersburg, Russia, ORCID:, e-mail:

Irina G. Skotnikova, Doctor of Psychology, leading researcher at the laboratory of system studies of the psyche, Russian Academy of Science, Moscow, Russia, ORCID:, e-mail:

Valeriya Y. Karpinskaya, Doctor of Psychology, Professor of the Department of Psychology, Saint-Petersburg State University, St.Petersburg, Russia, ORCID:, e-mail:



Total: 61
Previous month: 16
Current month: 45


Total: 16
Previous month: 3
Current month: 13