Event-related potentials during literacy acquisition

376

Abstract

Literacy is a complex and multidimensional phenomenon that has been well studied in psychology and pedagogy. Neurophysiologists try to understand the mechanisms of writing and reading acquisition by analyzing different linguistic processes. In this paper, we review the data that were revealed by using the event-related potentials (ERPs) method in the light of spelling, lexical, semantic and syntactic aspects of literacy, as well as changes in the components of ERPs in children and adults during language acquisition and in dyslexia, the most studied reading disorder. The ERPs method can help to understand both the general, universal neural underpinnings of literacy development and the unique features of different languages.

General Information

Keywords: literacy acquisition, reading, error recognition, dyslexia, event related potentials, N170, N400, P600

Journal rubric: Cognitive Pedagogy

Article type: review article

DOI: https://doi.org/10.17759/jmfp.2020090202

Funding. The reported study was funded by Russian Foundation for Basic Research (RFBR), project number 20-013-00514.

For citation: Rebreikina A.B., Larionova E.V., Martynova O.V. Event-related potentials during literacy acquisition [Elektronnyi resurs]. Sovremennaia zarubezhnaia psikhologiia = Journal of Modern Foreign Psychology, 2020. Vol. 9, no. 2, pp. 21–33. DOI: 10.17759/jmfp.2020090202. (In Russ., аbstr. in Engl.)

References

  1. Eletskaya O.V. Osobennosti leksicheskogo zapasa i leksicheskikh operatsii u shkol'nikov s dizorfografiei = [Peculiarities of the lexical stock and lexical operations in schoolchildren with dysorphography] [Elektronnyi resurs]. Vestnik Permskogo gosudarstvennogo gumanitarno-pedagogicheskogo universiteta. Seriya № 1. Psikhologicheskie i pedagogicheskie nauki = [Bulletin of the Perm State Humanitarian and Pedagogical University. Series No. 1. Psychological and pedagogical sciences], 2014, no. 2–1, pp. 154–159. URL: https://cyberleninka.ru/article/n/osobennosti-leksicheskogo-zapasa-i-leksicheskih-operatsiy-u-shkolnikov-s-dizorfografiey/viewer (Accessed 15.06.2020). (In Russ.).
  2. Kornev A.N. Poetapnoe formirovanie operativnykh edinits pis'ma i chteniya kak bazovyi algoritm usvoeniya etikh navykov = [The phased formation of operational units of writing and reading as a basic algorithm for mastering these skills]. In Velichenkovoi O.A. (eds.), Narusheniya pis'ma i chteniya u detei: izuchenie i korrektsiya = [Disorders of writing and reading in children: study and correction], 2019, pp. 6–23. (In Russ.).
  3. Cummings A. et al. A developmental ERP study of verbal and non-verbal semantic processing. Brain Research, 2008. Vol. 1208, pp. 137–149. DOI:10.1016/j.brainres.2008.02.015
  4. Berninger V.W., Richards T.L., Abbott R.D. Differential diagnosis of dysgraphia, dyslexia, and OWL LD: Behavioral and neuroimaging evidence. Reading and Writing, 2015. Vol. 28, no. 8, pp. 1119–1153. DOI:10.1007/s11145-015-9565-0
  5. Byrne J.M. et al. Brain activity and language assessment using event-related potentials: Development of a clinical protocol. Developmental Medicine and Child Neurology, 1999. Vol. 41, no. 11, pp. 740–747. DOI:10.1017/S0012162299001504
  6. Cheyette S.J., Plaut D.C. Modeling the N400 ERP component as transient semantic over-activation within a neural network model of word comprehension. Cognition, 2017. Vol. 162, pp. 153–166. DOI:10.1016/j.cognition.2016.10.016
  7. Commodari E. et al. Children learn to read: how visual analysis and mental imagery contribute to the reading performances at different stages of reading acquisition. Journal of Psycholinguistic Research, 2020. Vol. 49, no. 1, pp. 59–72. DOI:10.1007/s10936-019-09671-w
  8. Tong X. et al. Coarse and fine N1 tuning for print in younger and older Chinese children: Orthography, phonology, or semantics driven? Neuropsychologia, 2016. Vol. 91, pp. 109–119. DOI:10.1016/j.neuropsychologia.2016.08.006
  9. Coch D. The N400 and the fourth grade shift. Developmental science, 2015. Vol. 18, no. 2, pp. 254–269. DOI:10.1111/desc.12212
  10. Coch D., Meade G. N1 and P2 to words and wordlike stimuli in late elementary school children and adults. Psychophysiology, 2016. Vol. 53, no. 2, pp. 115–128. DOI:10.1111/psyp.12567
  11. Demoulin C., Kolinsky R. Does learning to read shape verbal working memory? Psychonomic bulletin & review, 2016. Vol. 23, no. 3, pp. 703–722. DOI:10.3758/s13423-015-0956-7
  12. Zhao J. et al. Development of neural specialization for print: Evidence for predictive coding in visual word recognition. PLoS biology, 2019. Vol. 17, no. 10, 17 p. DOI:10.1371/journal.pbio.3000474
  13. Heldmann M. et al. Development of sensitivity to orthographic errors in children: An event-related potential study. Neuroscience, 2017. Vol. 358, pp. 349–360. DOI:10.1016/j.neuroscience.2017.07.002
  14. Wachinger C. et al. Does the late positive component reflect successful reading acquisition? A longitudinal ERP study. NeuroImage: Clinical, 2018. Vol. 17, pp. 232–240. DOI:10.1016/j.nicl.2017.10.014
  15. Araújo S. et al. Electrophysiological correlates of impaired reading in dyslexic pre-adolescent children. Brain and cognition, 2012. Vol. 79, no. 2, pp. 79–88. DOI:10.1016/j.bandc.2012.02.010
  16. González-Garrido A.A. et al. ERP Effects of Word Exposure and Orthographic Knowledge on Lexical Decisions in Spanish. Journal of Behavioral and Brain Science, 2015. Vol. 5, no. 6, pp. 185–193. DOI:10.4236/jbbs.2015.56019
  17. Yang C.L. et al. ERP indicators of L2 proficiency in word-to-text integration processes. Neuropsychologia, 2018. Vol. 117, pp. 287–301. DOI:10.1016/j.neuropsychologia.2018.06.001
  18. Osterhout L. et al. Event-related Potentials as Metrics of Foreign Language Learning and Loss. In Schmid M.S., Köpke B. (eds.), The Oxford handbook of language attrition. Oxford: Oxford University Press, 2019, pp. 403–416.
  19. Brem S. et al. Evidence for developmental changes in the visual word processing network beyond adolescence. Neuroimage, 2006. Vol. 29, no. 3, pp. 822–837. DOI:10.1016/j.neuroimage.2005.09.023
  20. Faísca L., Reis A.I.D., Araújo S. Early brain sensitivity to word frequency and lexicality during reading aloud and implicit reading. Frontiers in Psychology, 2019. Vol. 10, article ID 830, 13 p. DOI:10.3389/fpsyg.2019.00830
  21. Friedrich M., Friederici A.D. Maturing brain mechanisms and developing behavioral language skills. Brain and Language, 2010. Vol. 114, no. 2, pp. 66–71. DOI:10.1016/j.bandl.2009.07.004
  22. Gómez-Velázquez F.R., González-Garrido A.A., Vega-Gutiérrez O.L. Naming abilities and orthographic recognition during childhood an event-related brain potentials study. International Journal of Psychological Studies, 2013. Vol. 5, no. 1, pp. 55–68. DOI:10.5539/ijps.v5n1p55
  23. Holcomb P.J., Coffey S.A., Neville H.J. Visual and auditory sentence processing: A developmental analysis using event‐related brain potentials. Developmental Neuropsychology, 1992. Vol. 8, no. 2–3, pp. 203–241. DOI:10.1080/87565649209540525
  24. Huettig F., Pickering M.J. Literacy advantages beyond reading: Prediction of spoken language. Trends in cognitive sciences, 2019. Vol. 23, no. 6, pp. 464–475. DOI:10.1016/j.tics.2019.03.008
  25. Kimppa L. et al. Impaired neural mechanism for online novel word acquisition in dyslexic children. Scientific reports, 2018. Vol. 8, no. 1, pp. 1–12. DOI:10.1038/s41598-018-31211-0
  26. Schulz E. et al. Impaired semantic processing during sentence reading in children with dyslexia: combined fMRI and ERP evidence. Neuroimage, 2008. Vol. 41, no. 1, pp. 153–168. DOI:10.1016/j.neuroimage.2008.02.012
  27. Kutas M., Federmeier K.D. Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Annual review of psychology, 2011. Vol. 62, pp. 621–647. DOI:10.1146/annurev.psych.093008.131123
  28. Araújo S. et al. Lexical and sublexical orthographic processing: An ERP study with skilled and dyslexic adult readers. Brain and Language, 2015. Vol. 141, pp. 16–27. DOI:10.1016/j.bandl.2014.11.007
  29. Dowd A.J. et al. Lifewide learning for early reading development. New directions for child and adolescent development, 2017. Vol. 2017, no. 155, pp. 31–49. DOI:10.1002/cad.20193
  30. McLaughlin J., Osterhout L., Kim A. Neural correlates of second-language word learning: Minimal instruction produces rapid change. Nature neuroscience, 2004. Vol. 7, no. 7, pp. 703–704. DOI:10.1038/nn1264
  31. Hasko S. et al. N300 indexes deficient integration of orthographic and phonological representations in children with dyslexia. Neuropsychologia, 2012. Vol. 50, no. 5, pp. 640–654. DOI:10.1016/j.neuropsychologia.2012.01.001
  32. Lindau T.A. et al. N400 analysis of semantic processing in children aged zero to six years: a literature review. Revista CEFAC: Atualizacao Cientifica em Fonoaudiologia e Educacao, 2017. Vol. 19, no. 5, pp. 690–702. DOI:10.1590/1982-0216201719513517
  33. Wang E. et al. N400 and P600 effect of chinese words recognition. NeuroQuantology, 2017. Vol. 15, no. 4, pp. 76–83. DOI:10.14704/nq.2017.15.4.1172
  34. Bühler J.C. et al. Neural processes associated with vocabulary and vowel-length differences in a dialect: An ERP study in pre-literate children. Brain topography, 2017. Vol. 30, no. 5, pp. 610–628. DOI:10.1007/s10548-017-0562-2
  35. Helenius P. et al. Neural processing of spoken words in specific language impairment and dyslexia. Brain, 2009. Vol. 132, no. 7, pp. 1918–1927. DOI:10.1093/brain/awp134
  36. Eberhard‐Moscicka A.K. et al. Neurocognitive mechanisms of learning to read: print tuning in beginning readers related to word‐reading fluency and semantics but not phonology. Developmental science, 2015. Vol. 18, no. 1, pp. 106–118. DOI:10.1111/desc.12189
  37. Bakos S. et al. Neurophysiological correlates of word processing deficits in isolated reading and isolated spelling disorders. Clinical Neurophysiology, 2018. Vol. 129, no. 3, pp. 526–540. DOI:10.1016/j.clinph.2017.12.010
  38. Okumura Y., Kita Y., Inagaki M. Pure and short-term phonics-training improves reading and print-specific ERP in English: A case study of a Japanese middle school girl. Developmental neuropsychology, 2017. Vol. 42, no. 4, pp. 265–275. DOI:10.1080/87565641.2017.1334784
  39. Perfetti C.A., Wlotko E.W., Hart L.A. Word learning and individual differences in word learning reflected in event-related potentials. Journal of Experimental Psychology: Learning, Memory, and Cognition, 2005. Vol. 31, no. 6, pp. 1281–1292. DOI:10.1037/0278-7393.31.6.1281
  40. Kemény F. et al. Print-, sublexical and lexical processing in children with reading and/or spelling deficits: an ERP study. International Journal of Psychophysiology, 2018. Vol. 130, pp. 53–62. DOI:10.1016/j.ijpsycho.2018.05.009
  41. Bermúdez-Margaretto B. et al. Repeated exposure to “meaningless” pseudowords modulates LPC, but not N (FN) 400. Brain topography, 2015. Vol. 28, no. 6, pp. 838–851. DOI:10.1007/s10548-014-0403-5
  42. Sacchi E., Laszlo S. An event-related potential study of the relationship between N170 lateralization and phonological awareness in developing readers. Neuropsychologia, 2016. Vol. 91, pp. 415–425. DOI:10.1016/j.neuropsychologia.2016.09.001
  43. Sánchez-Vincitore L.V., Avery T., Froud K. Word-related N170 responses to implicit and explicit reading tasks in neoliterate adults. International Journal of Behavioral Development, 2018. Vol. 42, no. 3, pp. 321–332. DOI:10.1177/0165025417714063
  44. Sauseng P., Bergmann J., Wimmer H. When does the brain register deviances from standard word spellings? — An ERP study. Cognitive Brain Research, 2004. Vol. 20, no. 3, pp. 529–532. DOI:10.1016/j.cogbrainres.2004.04.008
  45. Loberg O. et al. Semantic anomaly detection in school-aged children during natural sentence reading–A study of fixation-related brain potentials. PloS one, 2018. Vol. 13, no. 12, 27 p. DOI:10.1371/journal.pone.0209741
  46. Rasamimanana M. et al. Semantic compensation and novel word learning in university students with dyslexia. Neuropsychologia, 2020. Vol. 139, 13 p. DOI:10.1016/j.neuropsychologia.2020.107358
  47. Kallioinen P. et al. Semantic processing in deaf and hard-of-hearing children: Large N400 mismatch effects in brain responses, despite poor semantic ability. Frontiers in psychology, 2016. Vol. 7, article ID 1146, 10 p. DOI:10.3389/fpsyg.2016.01146
  48. Pijnacker J. et al. Semantic processing of sentences in preschoolers with specific language impairment: Evidence from the N400 effect. Journal of Speech, Language, and Hearing Research, 2017. Vol. 60, no. 3, pp. 627–639. DOI:10.1044/2016_JSLHR-L-15-0299
  49. Rüsseler J. et al. Semantic, syntactic, and phonological processing of written words in adult developmental dyslexic readers: an event-related brain potential study. BMC neuroscience, 2007. Vol. 8, no. 52, 10 p. DOI:10.1186/1471-2202-8-52
  50. Cavalli E. et al. Spatiotemporal reorganization of the reading network in adult dyslexia. Cortex, 2017. Vol. 92, pp. 204–221. DOI:10.1016/j.cortex.2017.04.012
  51. Tanner D., Grey S., van Hell J.G. Dissociating retrieval interference and reanalysis in the P600 during sentence comprehension. Psychophysiology, 2017. Vol. 54, no. 2, pp. 248–259. DOI:10.1111/psyp.12788
  52. Maurer U. et al. The development of print tuning in children with dyslexia: Evidence from longitudinal ERP data supported by fMRI. Neuroimage, 2011. Vol. 57, no. 3, pp. 714–722. DOI:10.1016/j.neuroimage.2010.10.055
  53. Galperina E.I. et al. The Development of Words and Sentences Processing: ERP Study in 9-13 Years Old Children [Elektronnyi resurs]. In Shcherbakova O., Shtyrov Y. (eds.), Neurobiology of Speech and Language. Proceedings of the 2nd International Workshop «Neurobiology of Speech and Language». The Laboratory of Behavioural Neurodynamics, Saint Petersburg State University. St. Petersburg: Scythia-print, 2018, 64 p. URL: https://elibrary.ru/item.asp?id=36656783& (Accessed 15.06.2020).
  54. Hasko S. et al. The time course of reading processes in children with and without dyslexia: an ERP study. Frontiers in human neuroscience, 2013. Vol. 7, article ID 570, 19 p. DOI:10.3389/fnhum.2013.00570
  55. Wray A.H., Weber-Fox C. Specific aspects of cognitive and language proficiency account for variability in neural indices of semantic and syntactic processing in children. Developmental cognitive neuroscience, 2013. Vol. 5, pp. 149–171. DOI:10.1016/j.dcn.2013.03.002
  56. Strotseva-Feinschmidt A. et al. Young children’s sentence comprehension: Neural correlates of syntax-semantic competition. Brain and cognition, 2019. Vol. 134, pp. 110–121. DOI:10.1016/j.bandc.2018.09.003
  57. Yurchenko A., Lopukhina A., Dragoy O. Meaning relatedness in polysemous and homonymous words: an ERP study in Russian: basic research program working papers. Higher School of Economics Research Paper No. WP BRP. Moscow: National Research University Higher School of Economics, 2018. Vol. 67, 15 p. DOI:10.2139/ssrn.3291173

Information About the Authors

Anna B. Rebreikina, PhD in Biology, Researcher, Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology of RAS, Researcher, Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia, ORCID: https://orcid.org/0000-0001-5714-2040, e-mail: anna.rebreikina@gmail.com

Ekaterina V. Larionova, Junior Researcher, Laboratory of Higher Human Nervous Activity, Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia, ORCID: https://orcid.org/0000-0002-3637-1343, e-mail: larionova.ekaterin@gmail.com

Olga V. Martynova, Doctor of Philosophy, Head of the Laboratory, Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia, ORCID: https://orcid.org/0000-0001-9047-2893, e-mail: omartynova@ihna.ru

Metrics

Views

Total: 679
Previous month: 13
Current month: 11

Downloads

Total: 376
Previous month: 8
Current month: 7