Modelling and Data Analysis
2024. Vol. 14, no. 1, 135–154
doi:10.17759/mda.2024140109
ISSN: 2219-3758 / 2311-9454 (online)
Approximate Synthesis of Optimal Deterministic Control Systems with Incomplete Feedback Based on Sufficient ε-Optimality Conditions
Abstract
The problem of optimal control of deterministic dynamical systems in the absence of information about a part of the coordinates of the state vector is considered. Sufficient ε-optimality conditions based on the principle of expansion are formulated and proved. An algorithm is proposed for finding an a priori estimate of the proximity of the synthesized control law with incomplete feedback to the optimal one for a given set of initial states. The solution of the model example is given.
General Information
Keywords: sufficient optimality conditions, optimal synthesizing function, multi-agent algorithm, calculation of a priori estimation
Journal rubric: Optimization Methods
Article type: scientific article
DOI: https://doi.org/10.17759/mda.2024140109
Received: 01.03.2024
Accepted:
For citation: Panteleev A.V., Karane M.S. Approximate Synthesis of Optimal Deterministic Control Systems with Incomplete Feedback Based on Sufficient ε-Optimality Conditions. Modelirovanie i analiz dannikh = Modelling and Data Analysis, 2024. Vol. 14, no. 1, pp. 135–154. DOI: 10.17759/mda.2024140109. (In Russ., аbstr. in Engl.)
References
- Pontryagin L.S., Boltyansky V.G., Gamkrelidze R.V., Mishchenko E.F. Mathematical theory of optimal processes. M.: Nauka, 1983. (In Russ.).
- Fedorenko R.P. Approximate solution of optimal control problems. M.: Nauka, 1978. (In Russ.).
- Athans M., Falb P.L. Optimal Control: An Introduction to the Theory and Its Applications, Chelmsford, MA, USA: Courier Corporation, 2013.
- Gornov A.Yu. Computational technologies for solving optimal control problems. Novosibirsk: Nauka, 2009. (In Russ.).
- Srochko V.A. Iterative methods for solving optimal control problems. M. : Fizmatlit, 2000. (In Russ.).
- Dykhta V.A., Tyatyushkin A.I. Improvement methods in computational experiment. Novosibirsk: Nauka, 1988. (In Russ.).
- Kolmanovsky V.B., Nosov V.R. Approximate and numerical methods for solving problems of optical control. Moscow: MIEM, 1989. (In Russ.).
- Panteleev A.V., Karane M.M.S. Multi–agent and bio–inspired optimization methods for optimizing technical systems.– М.: Dobroe slovo & Co, 2024.– 336 p. (In Russ.).
- Krotov V.F., Gurman V.I. Methods and problems of optimal control. Moscow: Nauka, 1973. (In Russ.).
- Krotov V.F.Global methods in optimal control theory. New York: Marcel Dekker, 1996.
- Gurman V.I. The principle of expansion in control problems. M.: Nauka, 1997. (In Russ.).
- Gurman V.I. Approximate synthesis of optimal control// Automation and Telemechanics, 1976. No.5. (In Russ.).
- Baturin V.A., Urbanovich D.E. Approximate methods of optimal control based on the principle of expansion. Novosibirsk : Nauka, 1997. (In Russ.).
- Weinstein S.E. Approximation of function of several variables // J. Approximation Theory. 1969. Vol. 2. P. 433–447.
- Panteleev A.V., Semenov V.V. Synthesis of optimal control systems with incomplete information. Moscow: MAI Publishing House, 1992. (In Russ.).
- Krotov V. F., Feldman N. N. Iterative method for solving optimal control problems // Izvestia of the USSR Academy of Sciences. Technical cybernetics. 1983. No. 2. pp. 160–168. (In Russ.).
- Khrustalev M.M. Necessary and sufficient conditions in the form of the Bellman equation // Reports of the USSR Academy of Sciences. 1978. Vol.242. No.5. pp. 1023–1026. (In Russ.).
Information About the Authors
Metrics
Views
Total: 55
Previous month: 6
Current month: 0
Downloads
Total: 28
Previous month: 2
Current month: 0