|
|
GABA and Glutamate Imbalance in Autism and Their Reversal as Novel Hypothesis for Effective Treatment Strategy 1248
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by reduced social communication and repetitive behaviors. The etiological mechanisms of ASD are still unknown; however, the GABAergic system has received considerable attention due to its potential as a therapeutic target. Based on the fact that individuals with autism demonstrate altered gene expression concomitant with impaired blood brain barrier (BBB), and gut barrier integrities, so increased glutamate levels in the blood and platelets of ASD patients can be related to lower numbers of cerebellar GABAergic neurons, less active GABA-synthesizing enzymes, and decreased brain GABA levels. Excitotoxic levels of released glutamate trigger a cascade of deleterious cellular events leading to delayed neuronal death. According to our understanding of glutamate excitotoxicity, GABA supplementation could theoretically be useful to treat certain autistic phenotypes. While there is still no effective and safe medication for glutamate-related cell damage and death, combined efforts will hopefully develop better treatment options. Here I hypothesize that an integrated treatment strategy with GABA supplements, regulation of chloride (Cl-) and magnesium (Mg2+) levels, vitamin D supplements, probiotics to enhance GABAA receptor and glutamate decarboxylase (GAD) expression, and memantine to activate glutamate transporters and inhibit NMDA receptors, could collectively reduce glutamate levels, maintain functional GABA receptors and thus treat repetitive behavior, impaired social behavior, and seizure activity in individuals with autism.
Keywords: autism; glutamate excitotoxicity; gamma-aminobutyric acid; vitamin D; gut microbiota
Column: Research & Diagnosis of ASD
DOI: https://doi.org/10.17759/autdd.2020180306
Funding. This project was funded by the National Plan for Science Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, Award number: 08-MED 510-02
Acknowledgements. The author thank the Deanship of Scientific Research and RSSU at King Saud University for their technical support.” Special thanks for Mrs Ramesa Shafi Bhat, Biochemistry Department, College of Science, KSU for her great efforts in improving the manuscript
-
Adams J.B. et al. Nutritional and metabolic status
of children with autism vs. neurotypical children, and the association with
autism severity. Nutrition & metabolism, 2011, vol. 8, no. 1,
p. 34. DOI: 10.1186/1743-7075-8-34
-
Alfawaz H., Tamim H., Alharbi S., Aljaser S., Tamimi
W. Vitamin D status among patients visiting a tertiary care center in
Riyadh, Saudi Arabia: a retrospective review of 3475 cases. BMC public
health, 2014, vol. 14, no. 1, p. 159. DOI: 10.1186/1471-2458-14-159
-
Al-Suwailem E., Abdi S., Bhat R.S., El-Ansary A.
Glutamate Signaling Defects in Propionic Acid Orally Administered to Juvenile
Rats as an Experimental Animal Model of Autism. Neurochemical Journal,
2019, vol. 13, no. 1, pp. 90—98. DOI: 10.1134/S1819712419010021
-
Anderson C.M., Swanson R.A. Astrocyte glutamate
transport: review of properties, regulation, and physiological functions.
Glia, 2000, vol. 32, no. 1, pp. 1—14.
-
Angelova P.R., Abramov A.Y. Role of mitochondrial
ROS in the brain: from physiology to neurodegeneration. FEBS letters,
2018, vol. 592, no. 5, pp. 692—702. DOI: 10.1002/1873-3468.12964
-
Aoki Y., Cortese S. Mitochondrial
aspartate/glutamate carrier SLC25A12 and autism spectrum disorder: a
meta-analysis. Molecular neurobiology, 2016, vol. 53, no. 3, pp.
1579—1588. DOI: 10.1007/s12035-015-9116-3
-
Ashwood P., Hughes H.K. Brief Report: Anti-Candida
albicans IgG antibodies in children with autism spectrum disorders.
Frontiers in psychiatry, 2018, vol. 9, p. 627. DOI:
10.3389/fpsyt.2018.00627
-
Bailey A. et al. A clinicopathological study of
autism. Brain: a journal of neurology, 1998, vol. 121, no. 5, pp.
889—905. DOI: 10.1093/brain/121.5.889
-
Barrett E., Ross R.P., O’Toole P.W., Fitzgerald G.F.,
Stanton C. γ-Aminobutyric acid production by culturable bacteria from the
human intestine [correction published in: Journal of applied
microbiology, 2014, vol. 116, no. 5, pp. 1384—1386]. Journal of applied
microbiology, 2012, vol. 113, no. 2, pp. 411—417. DOI:
10.1111/j.1365-2672.2012.05344.x
-
Ben-Ari Y. The GABA excitatory/inhibitory
developmental sequence: a personal journey. Neuroscience, 2014, vol.
279, pp. 187—219. DOI: 10.1016/j.neuroscience.2014.08.001
-
Bezzi P. et al. CXCR4-activated astrocyte glutamate
release via TNFα: amplification by microglia triggers neurotoxicity. Nature
neuroscience, 2001, vol. 4, no. 7, pp. 702—710. DOI: 10.1038/89490
-
Bilbo S.D., Schwarz J.M. Early-life programming of
later-life brain and behavior: a critical role for the immune system.
Frontiers in behavioral neuroscience, 2009, vol. 3, p. 14. DOI:
10.3389/neuro.08.014.2009
-
Bilbo S.D., Smith S.H., Schwarz J.M. A lifespan
approach to neuroinflammatory and cognitive disorders: a critical role for
glia. Journal of Neuroimmune Pharmacology, 2012, vol. 7, no. 1, pp.
24—41. DOI: 10.1007/s11481-011-9299-y
-
Biou V., Bhattacharyya S., Malenka R.C. Endocytosis
and recycling of AMPA receptors lacking GluR2/3. Proceedings of the National
Academy of Sciences of the United States of America, 2008, vol. 105, no. 3,
pp. 1038—1043. DOI: 10.1073/ pnas.0711412105
-
Blatt G.J. et al. Density and
distribution of hippocampal neurotransmitter
receptors in autism: an autoradiographic study. Journal of
autism and developmental disorders, 2001, vol. 31, no. 6, pp. 537—543. DOI:
10.1023/a:1013238809666
-
Boonstra E., de Kleijn R., Colzato L.S., Alkemade A.,
Forstmann B.U., Nieuwenhuis S. Neurotransmitters as food supplements: the
effects of GABA on brain and behavior. Frontiers in Psychology, 2015,
vol. 6, p. 1520. DOI: 10.3389/ fpsyg.2015.01520
-
Borisova T. et al. Effects of new fluorinated
analogues of GABA, pregabalin bioisosters, on the ambient level and exocytotic
release of [(3)H]GABA from rat brain nerve terminals. Bioorganic &
Medicinal Chemistry, 2017, vol. 25, no. 2, pp. 759— 764. DOI:
10.1016/j.bmc.2016.11.052
-
Borisova T. Nervous System Injury in Response to
Contact With Environmental, Engineered and Planetary Micro- and Nano-Sized
Particles. Frontiers in Physiology, 2018, vol. 9, p. 728. DOI:
10.3389/fphys.2018.00728
-
Borisova T. Permanent dynamic transporter-mediated
turnover of glutamate across the plasma membrane of presynaptic nerve
terminals: arguments in favor and against. Reviews in the Neurosciences,
2016, vol. 27, no. 1, pp. 71—81. DOI: 10.1515/revneuro-2015-0023
-
Borisova T., Borysov A. Putative duality of
presynaptic events. Reiews in the Neurosciences, 2016, vol. 27, no. 4,
pp. 377— 383. DOI: 10.1515/revneuro-2015-0044
-
Bravo J.A. et al. Ingestion of Lactobacillus strain
regulates emotional behavior and central GABA receptor expression in a mouse
via the vagus nerve. Proceedings of the National Academy of Sciences of the
United States of America, 2011, vol. 108, no. 38, pp. 16050—16055. DOI:
10.1073/pnas.1102999108
-
Brown M.S., Singel D., Hepburn S., Rojas D.C.
Increased glutamate concentration in the auditory cortex of persons with autism
and first-degree relatives: a (1)H-MRS study. Autism Research, 2013,
vol. 6, no. 1, pp. 1—10. DOI: 10.1002/ aur.1260
-
Bruchhage M.K., Bucci M.-P., Becker E.B.E.
Cerebellar involvement in autism and ADHD. Handbook of clinical
neurology, 2018, vol. 155, pp. 61—72. DOI:
10.1016/B978-0-444-64189-2.00004-4
-
Burrus C J. A biochemical rationale for the
interaction between gastrointestinal yeast and autism. Medical
Hypotheses, 2012, vol. 79, no. 6, pp. 784—785. DOI:
10.1016/j.mehy.2012.08.029
-
Canitano R., Pallagrosi M. Autism spectrum
disorders and schizophrenia spectrum disorders: excitation/inhibition imbalance
and developmental trajectories. Frontiers in psychiatry, 2017, vol. 8,
p. 69. DOI: 10.3389/fpsyt.2017.00069
-
Caraiscos V.B. et al. Tonic inhibition in mouse
hippocampal CA1 pyramidal neurons is mediated by α5 subunit-containing
γ-aminobutyric acid type A receptors. Proceedings of the National Academy of
Sciences of the United States of America, 2004, vol. 101, no. 10, pp.
3662—3667. DOI: 10.1073/pnas.0307231101
-
Cellot G., Cherubini E. GABAergic signaling as
therapeutic target for autism spectrum disorders. Frontiers in
pediatrics, 2014, vol. 2, p. 70. DOI: 10.3389/fped.2014.00070
-
Chebib M., Johnston G.A. The ‘ABC’ of GABA
receptors: a brief review. Clinical and experimental pharmacology and
physiology, 1999, vol. 26, no. 11, pp. 937—940. DOI:
10.1046/j.1440-1681.1999.03151.x
-
Cohen B.I. GABA-transaminase, the liver and
infantile autism. Medical Hypotheses, 2001, vol. 57, no. 6, pp. 673—674.
DOI: 10.1054/mehy.2001.1350
-
Côme E., Marques X., Poncer J.C.,
Lévi S. Neuronal protein mobility KCC2 membrane diffusion
tunes neuronal chloride homeostasis. Neuropharmacology, 2020, vol. 169.
DOI: 10.1016/j.neuropharm.2019.03.014
-
Cull-Candy S., Kelly L., Farrant M. Regulation of
Ca2+-permeable AMPA receptors: synaptic plasticity and beyond. Current
opinion in neurobiology, 2006, vol. 16, no. 3, pp. 288—297. DOI:
10.1016/j.conb.2006.05.012
-
Daghestani M.H. et al. The role of apitoxin in
alleviating propionic acid-induced neurobehavioral impairments in rat pups: the
expression pattern of Reelin gene. Biomedicine & Pharmacotherapy,
2017, vol. 93, pp. 48—56.
-
Dhossche D. et al. Elevated plasma
gamma-aminobutyric acid (GABA) levels in autistic youngsters: stimulus for a
GABA hypothesis of autism. Medical Science Monitor, 2002, vol. 8, no. 8,
pp. PR1—PR6.
-
Diagnostic and statistical manual of mental disorders:
DSM-5. 5th edition. Arlington: Publ. American Psychiatric Publishing, 2013.
ISBN 978-0-89042-555-8.
-
Duarte S.T. et al. Abnormal expression of
cerebrospinal fluid cation chloride cotransporters in patients with Rett
syndrome. PLoS One, 2013, vol. 8, no. 7, article no. e68851. DOI:
10.1371/journal.pone.0068851
-
Edfawy M. et al. Abnormal mGluR-mediated synaptic
plasticity and autism-like behaviours in Gprasp2 mutant mice. Nature
Communications, 2019, vol. 10, no. 1, p. 1431. DOI:
10.1038/s41467-019-09382-9
-
Edmiston E., Ashwood P., Van de Water J.
Autoimmunity, autoantibodies, and autism spectrum disorder. Biological
psychiatry, 2017, vol. 81, no. 5, pp. 383—390. DOI:
10.1016/j.biopsych.2016.08.031
-
Egerton A. et al. Anterior cingulate glutamate
levels related to clinical status following treatment in first-episode
schizophrenia. Neuropsychopharmacology, 2012, vol. 37, no. 11, pp.
2515—2521. DOI: 10.1038/npp.2012.113
-
El-Ansary A. Data of multiple regressions analysis
between selected biomarkers related to glutamate excitotoxicity and oxidative
stress in Saudi autistic patients. Data in brief, 2016, vol. 7, pp.
111—116. DOI: 10.1016/j.dib.2016.02.025
-
El-Ansary A. et al. In the search for reliable
biomarkers for the early diagnosis of autism spectrum disorder: the role of
vitamin D. Metabolic brain disease, 2018, vol. 33, no. 3, pp. 917—931.
DOI: 10.1007/s11011-018-0199-1
-
El-Ansary A. et al. Probiotic treatment reduces the
autistic-like excitation/inhibition imbalance in juvenile hamsters induced by
orally administered propionic acid and clindamycin. Metabolic brain
disease, 2018, vol. 33, no. 4, pp. 1155— 1164. DOI:
10.1007/s11011-018-0212-8
-
El-Ansary A., Al-Ayadhi L. GABAergic/glutamatergic
imbalance relative to excessive neuroinflammation in autism spectrum disorders.
Journal of Neuroinflammation, 2014, vol. 11, p. 189. DOI:
10.1186/s12974-014-0189-0
-
El-Ansary A., Al-Salem H.S., Asma A., Al-Dbass A.
Glutamate excitotoxicity induced by orally administered propionic acid, a
short chain fatty acid can be ameliorated by bee pollen. Lipids in health
and disease, 2017, vol. 16, no. 1, p. 96. DOI:
10.1186/s12944-017-0485-7
-
Essa M.M., Braidy N., Subash S., Vijayan R.K.,
Guillemin G.J. Excitotoxicity in the Pathogenesis of Autism. In
Kostrzewa R.M. (ed.) Handbook of Neurotoxicity. Springer, New York:
Publ. Springer, 2014. 636 p. ISBN 978-1- 46145835-7.
-
Eyles D.W. Vitamin D and autism: does skin colour
modify risk? Acta paediatrica, 2010, vol. 99, no. 5, pp. 645—647. DOI:
10.1111/j.1651-2227.2010.01797.x
-
Fatemi S.H. et al. Glutamic acid decarboxylase 65
and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices.
Biological Psychiatry, 2002, vol. 52, no. 8, pp. 805—810. DOI:
10.1016/s0006-3223(02)01430-0
-
Fatemi S.H. The hyperglutamatergic hypothesis of
autism. Progress in Neuro-Psychopharmacology and Biological Psychiatry,
2008, vol. 32, no. 3, p. 911 [author reply 912—913]. DOI:
10.1016/j.pnpbp.2007.11.004
-
Felipo V., Butterworth R.F. Neurobiology of
ammonia. Progress in Neurobiology, 2002, vol. 67, no. 4, pp. 259—279.
DOI: 10.1016/s0301-0082(02)00019-9
-
Feng J. et al. Clinical improvement following
vitamin D3 supplementation in autism spectrum disorder. Nutritional
neuroscience, 2017, vol. 20, no. 5, pp. 284—290. DOI:
10.1080/1028415X.2015.1123847
-
Ferguson A.R. et al. Group I metabotropic glutamate
receptors control metaplasticity of spinal cord learning through a protein
kinase C-dependent mechanism. Journal of Neuroscience, 2008, vol. 28,
no. 46, pp. 11939—11949. DOI: 10.1523/ JNEUROSCI.3098-08.2008
-
Fernell E. et al. Autism spectrum disorder and low
vitamin D at birth: a sibling control study. Molecular autism, 2015,
vol. 6, no. 1, p. 3. DOI: 10.1186/2040-2392-6-3
-
Fiorentino M., Sapone A., Senger S. et al.
Blood-brain barrier and intestinal epithelial barrier alterations in autism
spectrum disorders. Molecular Autism, 2016, vol. 7, p. 49.
DOI:10.1186/s13229-016-0110-z
-
Ford T.C., Abu-Akel A., Crewther D.P. The
association of excitation and inhibition signaling with
the relative symptom expression of autism and psychosis-proneness:
Implications for psychopharmacology. Progress in Neuro- Psychopharmacology
and Biological Psychiatry, 2019, vol. 88, pp. 235—242. DOI:
10.1016/j.pnpbp.2018.07.024
-
Ford T.C., Nibbs R., Crewther D.P. Glutamate/GABA+
ratio is associated with the psychosocial domain of autistic and schizotypal
traits. PloS one, 2017, vol. 12, no. 7, article no. e0181961. DOI:
10.1371/journal.pone.0181961
-
Ford T.C., Nibbs R., Crewther D.P. Increased
glutamate/GABA+ ratio in a shared autistic and schizotypal trait phenotype
termed Social Disorganisation. NeuroImage: Clinical, 2017, vol. 16, pp.
125—131. DOI: 10.1016/j.nicl.2017.07.009
-
Gegelashvili G., Bjerrum O.J. High-affinity
glutamate transporters in chronic pain: an emerging therapeutic target.
Journal of neurochemistry, 2014, vol. 131, no.6, pp. 712—730. DOI:
10.1111/jnc.12957
-
Gong Z.-L. et al. Serum 25-hydroxyvitamin D levels
in Chinese children with autism spectrum disorders. Neuroreport, 2014,
vol. 25, no. 1, pp. 23—27. DOI: 10.1097/WNR.0000000000000034
-
Grant W.B., Cannell J.J.
Autism prevalence in the United States with respect to solar UV-B doses: an
ecological study. Dermato-endocrinology, 2013, vol. 5, no. 1, pp.
159—164. DOI: 10.4161/derm.22942
-
Grewer C. et al. Individual subunits of the
glutamate transporter EAAC1 homotrimer function independently of each other.
Biochemistry, 2005, vol. 44, no. 35, pp. 11913—11923. DOI:
10.1021/bi050987n
-
Groves N.J. et al. Adult vitamin D deficiency leads
to behavioural and brain neurochemical alterations in C57BL/6J and BALB/c mice.
Behavioural brain research, 2013, vol. 241, pp. 120—131. DOI:
10.1016/j.bbr.2012.12.001
-
Han S., Tai C., Jones C.J., Scheuer T., Catterall
W.A. Enhancement of inhibitory neurotransmission by GABAA receptors having
α2, 3-subunits ameliorates behavioral deficits in a mouse model of autism.
Neuron, 2014, vol. 81, no. 6, pp. 1282— 1289. DOI:
10.1016/j.neuron.2014.01.016
-
He Q., Nomura T., Xu J., Contractor A. The
developmental switch in GABA polarity is delayed in fragile X mice. Journal
of Neuroscience, 2014, vol. 34, no. 2, pp. 446—450. DOI:
10.1523/JNEUROSCI.4447-13.2014
-
-
Iovene M.R. et al.
Intestinaldysbiosisandyeastisolationinstoolofsubjectswithautismspectrumdisorders.
Mycopathologia, 2017, vol. 182, no. 3-4, pp. 349—363. DOI:
10.1007/s11046-016-0068-6
-
Kemper T.L., Bauman M. Neuropathology of infantile
autism. Journal of neuropathology and experimental neurology, 1998, vol.
57, no. 7, pp. 645—652. DOI: 10.1097/00005072-199807000-00001
-
Knoflach F., Hernandez M.-C.,
Bertrand D. GABAA receptor-mediated
neurotransmission: Not so simple after all.
Biochemical pharmacology, 2016, vol. 115, pp. 10—17. DOI:
10.1016/j.bcp.2016.03.014
-
Kočovská E., Gaughran F.,
Krivoy A., Meier U.C. Vitamin-D deficiency as a potential environmental
risk factor in multiple sclerosis, schizophrenia, and autism. Frontiers in
psychiatry, 2017, vol. 8, no. 47. DOI: 10.3389/fpsyt.2017.00047
-
Koyama R., Ikegaya Y. Microglia in the pathogenesis
of autism spectrum disorders. Neuroscience research, 2015, vol. 100, pp.
1—5. DOI: 10.1016/j.neures.2015.06.005
-
Krisanova N. et al. Vitamin D3 deficiency in
puberty rats causes presynaptic malfunctioning through alterations in
exocytotic release and uptake of glutamate/GABA and expression of EAAC-1/GAT-3
transporters. Food and Chemical Toxicology, 2019, vol. 123, pp. 142—150.
DOI: 10.1016/j.fct.2018.10.054
-
Lee V., Maguire J. The impact of tonic GABAA
receptor-mediated inhibition on neuronal excitability varies across brain
region and cell type. Frontiers in neural circuits, 2014, vol. 8, p. 3.
DOI: 10.3389/fncir.2014.00003
-
Leonoudakis D., Zhao P., Beattie E.C. Rapid tumor
necrosis factor α-induced exocytosis of glutamate receptor 2-lacking AMPA
receptors to extrasynaptic plasma membrane potentiates excitotoxicity.
Journal of Neuroscience, 2008, vol. 28, no. 9, pp. 2119—2130. DOI:
10.1523/JNEUROSCI.5159-07.2008
-
Leonte A., Colzato L.S., Steenbergen L., Hommel B.,
Akyürek E.G. Supplementation of gamma-aminobutyric acid
(GABA) affects temporal, but not spatial visual attention. Brain and
Cognition, 2018, vol. 120, pp. 8—16. DOI: 10.1016/j.
bandc.2017.11.004
-
Lieberman O., McGuirt A.F., Tang G., Sulzer D.
Roles for neuronal and microglial autophagy in synaptic pruning during
development. Neurobiology of Disease, 2019, vol. 122, pp. 49—63. DOI:
10.1016/j.nbd.2018.04.017
-
Lingford-Hughes A. et al. Imaging the
GABA-benzodiazepine receptor subtype containing the α5-subunit in vivo with
[11C] Ro15 4513 positron emission tomography. Journal of Cerebral
Blood Flow & Metabolism, 2002, vol. 22, no. 7,
pp. 878—889. DOI: 10.1097/00004647-200207000-00013
-
Liu A., Zhou W., Qu L., He F., Wang H., Wang Y., Cai
C., Li X., Zhou W., Wang M. Altered Urinary Amino Acids in Children With
Autism Spectrum Disorders. Frontiers in Cellular Neuroscience, 2019,
vol. 13, p. 7. DOI: 10.3389/fncel.2019.00007
-
Lu J.-C. et al. GABAA Receptor-Mediated Tonic
Depolarization in Developing Neural Circuits. Molecular neurobiology,
2014, vol. 49, no. 2, pp. 702—723. DOI: 10.1007/s12035-013-8548-x
-
MacDermott A.B., Mayer M.L., Westbrook G.L., Smith
S.J., Barker J.L. NMDA-receptor activation increases cytoplasmic calcium
concentration in cultured spinal cord neurones. Nature, 1986, vol. 321,
no. 6069, pp. 519—522. DOI: 10.1038/321519a0
-
MacFabe D.F. et al. Neurobiological effects of
intraventricular propionic acid in rats: possible role of short chain fatty
acids on the pathogenesis and characteristics of autism spectrum disorders.
Behavioural brain research, 2007, vol. 176, no. 1, pp. 149—169.
DOI: 10.1016/j.bbr.2006.07.025
-
Martin L.J. et al. α5GABAA receptor activity sets
the threshold for long-term potentiation and constrains hippocampus-
dependentmemory.JournalofNeuroscience,2010,vol.30,no.15,pp.5269—5282.DOI:10.1523/JNEUROSCI.4209-09.2010
-
Mazzone G.L., Nistri A. Modulation of extrasynaptic
GABAergic receptor activity influences glutamate release and neuronal survival
following excitotoxic damage to mouse spinal cord neurons. Neurochemistry
International, 2019, vol. 128, pp. 175—185. DOI:
10.1016/j.neuint.2019.04.018
-
Mead J., Ashwood P. Evidence supporting an altered
immune response in ASD. Immunology Letters, 2015, vol. 163, no. 1, pp.
49—55. DOI: 10.1016/j.imlet.2014.11.006
-
Meguid N.A., Hashish A.F., Anwar M., Sidhom G.
Reduced serum levels of 25-hydroxy and 1, 25-dihydroxy vitamin D in Egyptian
children with autism. The Journal of Alternative and Complementary
Medicine, 2010, vol. 16, no. 6, pp. 641—645. DOI:
10.1089/acm.2009.0349
-
Mehta A., Prabhakar M., Kumar P., Deshmukh R., Sharma
P.L. Excitotoxicity: bridge to various triggers in neurodegenerative
disorders. European journal of pharmacology, 2013, vol. 698, no. 1-3,
pp. 6—18. DOI: 10.1016/j.ejphar.2012.10.032
-
Merner N.D. et al. Regulatory domain or CpG site
variation in SLC12A5, encoding the chloride transporter KCC2, in human autism
and schizophrenia. Frontiers in cellular neuroscience, 2015, vol. 9, p.
386. DOI: 10.3389/fncel.2015.00386
-
Mesbah-Oskui L. et al. Reduced expression of
α5GABAA receptors elicits autism-like alterations in EEG patterns and
sleep-wake behavior. Neurotoxicology and teratology, 2017, vol. 61, pp.
115—122. DOI: 10.1016/j.ntt.2016.10.009
-
Moreno-De-Luca D. et al. Using large clinical data
sets to infer pathogenicity for rare copy number variants in autism cohorts.
Molecular psychiatry, 2013, vol. 18, no. 10, pp. 1090—1095. DOI:
10.1038/mp.2012.138
-
Mostafa G.A., Al-Ayadhi L.Y. Reduced serum
concentrations of 25-hydroxy vitamin D in children with autism: relation to
autoimmunity. Journal of neuroinflammation, 2012, vol. 9, no. 1, p. 201.
DOI: 10.1186/1742-2094-9-201
-
Mowery T.M. et al. Embryological exposure to
valproic acid disrupts morphology of the deep cerebellar nuclei in a sexually
dimorphic way. International Journal of Developmental Neuroscience,
2015, vol. 40, no. 1, pp. 15—23. DOI: 10.1016/j. ijdevneu.2014.10.003
-
Nelson S.B., Valakh V. Excitatory/Inhibitory
Balance and Circuit Homeostasis in Autism Spectrum Disorders. Neuron,
2015, vol. 87, no. 4, pp. 684—698. DOI: 10.1016/j.neuron.2015.07.033
-
Olloquequi J. et al. Excitotoxicity in the
pathogenesis of neurological and psychiatric disorders: Therapeutic
implications. Journal of Psychopharmacology, 2018, vol. 32, no. 3, pp.
265—275. DOI: 10.1177/0269881118754680
-
Olsen R.W., Sieghart W. GABAA receptors: subtypes
provide diversity of function and pharmacology. Neuropharmacology, 2009,
vol. 56, no. 1, pp. 141—148. DOI: 10.1016/j.neuropharm.2008.07.045
-
Pajarillo E., Rizor A., Lee J., Aschner M., Lee E.
The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological
disorders: potential targets for neurotherapeutics. Neuropharmacology,
2019, vol. 161, article no. 107559. DOI: 10.1016/j.neuropharm.2019.03.002
-
Pardo C.A., Vargas D.L., Zimmerman A.W. Immunity,
neuroglia and neuroinflammation in autism. International review of
psychiatry, 2005, vol. 17, no. 6, pp. 485—495. DOI:
10.1080/02646830500381930
-
Pascual O., Ben Achour S., Rostaing P., Triller A.,
Bessis A. Microglia activation triggers astrocyte-mediated
modulation of excitatory neurotransmission. Proceedings
the National Academy of Sciences of the United States of America, 2012,
vol. 109, no. 4, pp. E197—E205. DOI: 10.1073/pnas.1111098109
-
Patel D., Kharkar P.S., Nandave M. Emerging roles
of system x - anti-porter and its inhibition in CNS disorders. Molecular
membrane biology, 2015, vol. 32, no. 4, pp. 89—116. DOI:
10.3109/09687688.2015.1096972
-
Pessione E. Lactic acid bacteria contribution to
gut microbiota complexity: lights and shadows. Frontiers in cellular and
infection microbiology, 2012, vol. 2, p. 86. DOI:
10.3389/fcimb.2012.00086
-
Pokusaeva K. et
al. GABA-producing Bifidobacterium dentium
modulates visceral sensitivity in the
intestine. Neurogastroenterology & Motility, 2017, vol. 29,
no. 1, article no. e12904. DOI: 10.1111/nmo.12904
-
Raimondo J.V., Richards B.A., Woodin M.A. Neuronal
chloride and excitability — the big impact of small changes. Current opinion
in neurobiology, 2017, vol. 43, pp. 35—42. DOI:
10.1016/j.conb.2016.11.012
-
Reuter E., Tafelski S., Thieme K. et al. Die
Behandlung des Fibromyalgiesyndroms mit Gamma-Hydroxybuttersäure: Eine
randomisierte, kontrollierte Studie [Treatment of fibromyalgia syndrome with
gamma-hydroxybutyrate: A randomized controlled study] [published correction
appears in: Der Schmerz, 2017, vol. 31, no. 4, pp. 407—412]. Der
Schmerz [The pain], 2017, vol. 31, no. 2, 149—158. DOI:
10.1007/s00482-016-0166-x
-
Rivero-Segura N. et al. Prolactin prevents
mitochondrial dysfunction induced by glutamate excitotoxicity in hippocampal
neurons. Neuroscience letters, 2019, vol. 701, pp. 58—64. DOI:
10.1016/j.neulet.2019.02.027
-
Robertson A.E., David
R.S.R. The sensory experiences of adults with autism spectrum
disorder: A qualitative analysis. Perception, 2015, vol. 44, no. 5, pp.
569—586. DOI: 10.1068/p7833
-
Rojas D.C. The role of glutamate and its receptors
in autism and the use of glutamate receptor antagonists in treatment.
Journal of Neural Transmission, 2014, vol. 121, no. 8, pp. 891—905. DOI:
10.1007/s00702-014-1216-0
-
Rowley N.M., Madsen K.K., Schousboe A., Steve White
H. Glutamate and GABA synthesis, release, transport and metabolism as
targets for seizure control. Neurochemistry International, 2012, vol.
61, no. 4, pp. 546—558. DOI: 10.1016/j. neuint.2012.02.013
-
Rubenstein J.L., Merzenich M.M. Model of autism:
increased ratio of excitation/inhibition in key neural systems. Genes, Brain
and Behavior, 2003, vol. 2, no. 5, pp. 255—267. DOI:
10.1034/j.1601-183x.2003.00037.x
-
Saad K. et al. Vitamin D status in autism spectrum
disorders and the efficacy of vitamin D supplementation in autistic children.
Nutritional neuroscience, 2016, vol. 19, no. 8, pp. 346—351. DOI:
10.1179/1476830515Y.0000000019
-
Saleem T.H., Shehata G.A., Toghan R. et al.
Assessments of Amino Acids, Ammonia and Oxidative Stress Among Cohort of
Egyptian Autistic Children: Correlations with Electroencephalogram and Disease
Severity [correction published in: Neuropsychiatric Disease and
Treatment, 2020, vol. 16, p. 325]. Neuropsychiatric Disease and
Treatment, 2020, vol. 16, pp. 11—24. DOI: 10.2147/NDT.S233105
-
Sano C. History of glutamate production. The
American journal of clinical nutrition, 2009, vol. 90, no. 3, pp.
728S—732S. DOI: 10.3945/ajcn.2009.27462F
-
Schroer R.J. et al. Autism and maternally derived
aberrations of chromosome 15q. American journal of medical genetics,
1998, vol. 76, no. 4, pp. 327—336. DOI:
10.1002/(SICI)1096-8628(19980401)76:4<327::AID-AJMG8>3.0.CO;2-M
-
Sgadò P. et al. Loss of GABAergic
neurons in the hippocampus and cerebral cortex of Engrailed-2 null mutant mice:
implications for autism spectrum disorders. Experimental neurology,
2013, vol. 247, pp. 496—505. DOI: 10.1016/j. expneurol.2013.01.021
-
Shao Y. et al. Fine mapping of autistic disorder to
chromosome 15q11-q13 by use of phenotypic subtypes. The American Journal of
Human Genetics, 2003, vol. 72, no. 3, pp. 539—548. DOI:
10.1086/367846
-
Shimmura C. et al. Enzymes in the
glutamate-glutamine cycle in the anterior cingulate cortex in postmortem brain
of subjects with autism. Molecular Autism, 2013, vol. 4, no. 1, p. 6.
DOI: 10.1186/2040-2392-4-6
-
Sibson N.R. et al. In vivo 13C NMR measurements of
cerebral glutamine synthesis as evidence for glutamate—glutamine cycling.
Proceedings of the National Academy of Sciences of the United States of
America, 1997, vol. 94, no. 6, pp. 2699— 2704. DOI:
10.1073/pnas.94.6.2699
-
Smaga I. et al. Oxidative stress as an etiological
factor and a potential treatment target of psychiatric disorders. Part
Depression, anxiety, schizophrenia and autism. Pharmacological Reports,
2015, vol. 67, no. 3, pp. 569—580. DOI: 10.1016/j.pharep.2014.12.015
-
Smidkova M. et al. Screening of Novel
3α5β-Neurosteroids for Neuroprotective Activity against Glutamate-or NMDA-
Induced Excitotoxicity. The Journal of steroid biochemistry and molecular
biology, 2019, vol. 189, pp. 195—203. DOI:
10.1016/j.jsbmb.2019.03.007
-
Soni N., Reddy B.V.K., Kumar P. GLT-1 transporter:
an effective pharmacological target for various neurological disorders.
Pharmacology, Biochemistry and Behavior, 2014, vol. 127, pp. 70—81. DOI:
10.1016/j.pbb.2014.10.001
-
Tanous C., Gori A., Rijnen L., Chambellon E., Yvon
M. Pathways for α-ketoglutarate formation by Lactococcus lactis and their
role in amino acid catabolism. International Dairy Journal, 2005, vol.
15, no. 6-9, pp. 759—770. DOI: 10.1016/j. idairyj.2004.09.011
-
Tebartz van Elst L. et al. Disturbed cingulate
glutamate metabolism in adults with high-functioning autism spectrum disorder:
evidence in support of the excitatory/inhibitory imbalance hypothesis.
Molecular Psychiatry, 2014, vol. 19, no. 12, pp. 1314—1325. DOI:
10.1038/mp.2014.62
-
Torrez V.R. et al. Memantine mediates astrocytic
activity in response to excitotoxicity induced by PP2A inhibition.
Neuroscience letters, 2019, vol. 696, pp. 179—183. DOI:
10.1016/j.neulet.2018.12.034
-
Tyzio R. et al. Maternal oxytocin triggers a
transient inhibitory switch in GABA signaling in the fetal brain during
delivery. Science, 2016, vol. 314, no. 5806, pp. 1788—1792. DOI:
10.1126/science.1133212
-
Tyzio R. et al. Oxytocin-mediated GABA inhibition
during delivery attenuates autism pathogenesis in rodent offspring.
Science, 2014, vol. 343, no. 6171, pp. 675—679. DOI:
10.1126/science.1247190
-
Uğur Ç.,
Gürkan C.K. Serum vitamin D and folate levels in children
with autism spectrum disorders. Research in Autism Spectrum Disorders,
2014, vol. 8, no. 12, pp. 1641—1647. DOI: 10.1016/j.rasd.2014.09.002
-
Vargas D.L., Nascimbene C., Krishnan C., Zimmerman
A.W., Pardo C.A. Neuroglial activation and neuroinflammation in the brain
of patients with autism. Annals of Neurology, 2005, vol. 57, no. 1, pp.
67—81. DOI: 10.1002/ana.20315
-
Varman D., Soria-Ortíz M.B.,
Martínez-Torres A., Reyes-Haro D. GABAρ3 expression in lobule
Xof the cerebellum is reduced in the valproate model of autism. Neuroscience
letters, 2018, vol. 687, pp. 158—163. DOI:
10.1016/j.neulet.2018.09.042
-
Vesce S., Rossi D., Brambilla L., Volterra A.
Glutamate release from astrocytes in physiological conditions and in
neurodegenerative disorders characterized by neuroinflammation.
International review of neurobiology, 2007, vol. 82, pp. 57—71. DOI:
10.1016/S0074-7742(07)82003-4
-
Vinkhuyzen A.A. et al. Gestational vitamin D
deficiency and autism-related traits: the Generation R Study. Molecular
psychiatry, 2018, vol. 23, no. 2, pp. 240—246. DOI:
10.1038/mp.2016.213
-
Wakefield A.J. et al. Review article: the concept
of entero-colonic encephalopathy, autism and opioid receptor ligands.
Alimentary Pharmacology & Therapeutics, 2002, vol. 16, no. 4,
pp. 663—674. DOI: 10.1046/j.1365-2036.2002.01206.x
-
Whitney E., et al. Cerebellar Purkinje cells are
reduced in a subpopulation of autistic brains: a stereological experiment using
calbindin-D28k. Cerebellum. 2008;7(3):406-416.
doi:10.1007/s12311-008-0043-y
-
Yip J., Soghomonian J.J., Blatt G.J. Decreased
GAD67 mRNA levels in cerebellar Purkinje cells in autism: pathophysiological
implications. Acta neuropathologica, 2007, vol. 113, no. 5, pp. 559—568.
DOI: 10.1007/s00401-006-0176-3
-
Yizhar O. et al. Neocortical excitation/inhibition
balance in information processing and social dysfunction. Nature, 2011,
vol. 477, no. 7363, pp. 171—178. DOI: 10.1038/nature10360
-
Zareian M., Ebrahimpour A., Mohammed A.K.S., Saari
N. Modeling of glutamic acid production by Lactobacillus plantarum MNZ.
Electronic Journal of Biotechnology, 2013, vol. 16, no. 4, p. 1—16. DOI:
10.2225/vol16-issue4-fulltext-10
-
Zurek A.A. et al. α5GABAA receptor deficiency
causes autism-like behaviors. Annals of clinical and translational
neurology, 2016, vol. 3, no. 5, pp. 392—398. DOI: 10.1002/acn3.303
|
|