Invariance of Visual Perception

1766

Abstract

Perception and thinking is based largely on the ability of the brain to find in the world invariant features. The purpose of the study – to determine the ranges invariant perception, for various transformations of images of objects (angular size – magnitude, turn corners-projections), under which quantitative characteristics of their perceptions remained unchanged. The recognition psychophysical threshold measuring of incomplete line drawing images (Gollin-test) with different sizes and rotations was provided. The experimental data of invariance perception to the image size transformation and rotating of images are presented. We demonstrate that there is a wide range of angular sizes (from 1.0 up to 50 degrees of visual angle) across which the threshold of recognition of incomplete images does not depend on object size. However, there was found to be a narrow range of small sizes of stimulus (0.19–1, 0 degrees of visual angle) at which there was found to be a dependence of performance on object size. The thresholds of recognition of 3-D objects when viewed as incomplete 2-D images were measured at psychophysical experiments varying perspective of 3-D objects during testing. The memory template of the test objects description has "invariance" properties from 15 up to an angle of 60 degrees. The algorithm for template formation of 3-D objects in the human visual system need to be modeled, taking account of the invariance mechanism. The model of invariant perception, combining well-known model log-polar model and wavelet transform as the primary stage of filtration, and then match filtering and decision-making.

General Information

Keywords: incomplete images, invariant perception, gestalt, pattern recognition

Journal rubric: Psychophysiology

For citation: Shelepin Y.E., Chikhman V.N., Vakhrameeva O.A., Pronin S.V., Foreman N., Passmore P. Invariance of Visual Perception. Eksperimental'naâ psihologiâ = Experimental Psychology (Russia), 2008. Vol. 1, no. 1, pp. 7–33. (In Russ., аbstr. in Engl.)

References

  1. Aleksandrov V. V., Gorskij N. D. Predstavlenie i obrabotka izobrazhenij. Rekursivnyj podhod.  (Representation and processing of images. Recursive approach) L.: Nauka, 1985. 190 s.
  2. Bardin K. V. Problema porogov chuvstvitel'nosti i psihofizicheskie metody. (Sensitivity threshold issue and psychophysical methods) M.: Nauka, 1976.
  3. Vahrameeva O. A., Shelepin Ju. E., Mezencev A. Ju., Pronin S. V. Izuchenie vosprijatija nepolnyh konturnyh izobrazhenij razlichnogo razmera (A study of perception of incomplete contour images of different size) // Rossijskij fiziologicheskij zhurnal. (Russian physiological journal) 2008. T. 94. № 10.
  4. Glezer V. D., Dudkin K. N., Podvigin N. F. Zritel'noe opoznanie i ego nejrofiziologicheskie mehanizmy. (Visual identification and its neurophysiological mechanisms) M.: Nauka, 1975. 272 s.
  5. Glezer V. D., Cukkerman I. I. Informacija i zrenie. (Information and vision) Izdatel'stvo Akademii nauk SSSR. M.–L., 1961. 182 s.
  6. Dan'ko R. E., Krasil'nikov N. N., Kuznecov A. V., Litvincev S. V., Malahov Ju. K., Shelepin Ju. E. Kojefficient jeffektivnosti zritel'nogo vosprijatija u zdorovyh nabljudatelej i u bol'nyh nevrozami (Efficiency coefficient of visual perception in healthy observers and neurotics) // Opticheskij zhurnal. (Optical journal) 1999.T. 66. № 10. S. 65–67.
  7. Kamenkovich V. M., Shevelev I. A. Latentnye periody opoznanija chelovekom geometricheskih figur pri raznoj stepeni maskirovki ih storon i uglov. (Latency period of geometrical objects identification in different levels of masking their sides and angles) // Fiziologija cheloveka. (Human physiology) 2006. T. 32. № 2. S. 5–9.
  8. Kempbell F. V., Shelepin Ju. E. Vozmozhnosti foveoly v razlichenii ob'ektov. (Object differntiation abilities in foveola) // Sensornye sistemy. (Sensory systems) T. 4. № 2. S. 181–185. 1990.
  9. Krasil'nikov N. N., Shelepin Ju. E. Funkcional'naja model' zrenija (Functional model of vision) // Opticheskij zhurnal. (Optical journal) 1997. T. 64. № 2. S. 72–82.
  10. Krasil'nikov N. N., Shelepin Ju. E., Krasil'nikova O. I. Fil'tracija v zritel'noj sisteme cheloveka v uslovijah porogovogo nabljudenija (Filtering in human visual sustem during threshold observing) // Opticheskij zhurnal. (Optical journal) 1999. T. 66. № 1. S. 5–14.
  11. Krasil'nikov N. N., Krasil'nikova O. I., Shelepin Ju. E. Izmerenijaal'noe issledovanie soglasovannoj prostranstvennoj fil'tracii v zritel'noj sisteme cheloveka pri nabljudenii chisto hromaticheskih izobrazhenij (Computational study of consistent spatial filtering in human visual system while observing purely chromatical images) // Opticheskij zhurnal. (Optical journal) 1999. T. 66. № 10. S. 22–25.
  12. Krasil'nikov N. N., Shelepin Ju. E., Krasil'nikova O. I. Primenenie principov optimal'nogo nabljudatelja pri modelirovanii zritel'noj sistemy cheloveka (Optimal observer principle applying to human visual system modelling) // Opticheskij zhurnal. (Optical journal) 1999. T. 66. № 9. S. 17–24.
  13. Krasil'nikov N. N., Krasil'nikova O. I., Shelepin Ju. E. Issledovanie jeffektivnosti zritel'noj sistemy cheloveka pri opoznavanii staticheskih izobrazhenij (A study of human visual system efficiency during static images identification) // Opticheskij zhurnal. (Optical journal) 2002. T. 69. № 6. S. 27–34.
  14. Krasil'nikov N. N., Krasil'nikova O. I. Issledovanie kojefficienta jeffektivnosti zritel'noj sistemy cheloveka v porogovyh uslovijah nabljudenija dinamicheskih izobrazhenij (A study of human visual system efficiency coefficient in threshold observing dynamical images) // Avtometrija. (Autometrics) T. 39. № 4. S. 21–30. 2003-a.
  15. Krasil'nikov N. N., Krasil'nikova O. I., Shelepin Ju. E. Issledovanie jeffektivnosti zritel'noj sistemy cheloveka pri opoznavanii dinamicheskih izobrazhenij (A study of human visual system efficiency coefficient in dynamical images observing) // Fiziologija cheloveka. (Human physiology) 2003 b. T. 29. № 2. S. 5–10.
  16. Krasil'nikov N. N., Shelepin Ju. E., Krasil'nikova O. I. Issledovanie jeffektivnosti zritel'noj sistemy cheloveka pri opoznavanii dvizhuwihsja ob'ektov (A study of human visual system efficiency coefficient in moving objects observing) // Fiziologija cheloveka. (Human physiology)  2003 v. T. 29. № 4. S. 22–30.
  17. Krasil'nikov N. N., Mironenko E. P. Issledovanija vosprijatija pogreshnostej formy pri nabljudenii 3D-ob'ektov (Studies of shape measurement errors perception during 3D objects observing) // Opticheskij zhurnal. (Optical journal) 2006 a. T. 73. № 5. S. 18–23.
  18. Krasil'nikov N. N., Mironenko E. P., Krasil'nikova O. I. Kojefficient jeffektivnosti zritel'noj sistemy cheloveka pri proizvol'nyh uglah nabljudenija trehmernyh ob'ektov (Human visual system efficiency coefficient in three-dimentional objects observing in different angles) // Opticheskij zhurnal. (Optical journal)  2006 b. T. 73. № 10. S. 63–68.
  19. Merkul'ev A. V., Shelepin Ju. E., Chihman V. N. Pronin S.V., Foreman N. Optiko-geometricheskie harakteristiki i porogi vosprijatija fragmentirovannyh konturnyh figur (Optical and geometrical  characteristics and perception thresholds of fragmented outline figures) // Rossijskij fiziologicheskij zhurnal. (Russian physiological journal) 2003. T. 89. № 6. S. 731–737.
  20. Merkul'ev A. V., Pronin S. V., Semenov L. A. Foreman N., Chihman V. N., Shelepin Ju. E. Porogovoe otnoshenie signal/shum pri vosprijatii fragmentirovannyh figur (Threshold signal-to-noise ratio in fragmented outline figures perception) // Rossijskij fiziologicheskij zhurnal im. I. M. Sechenova. (I. M. Sechenov Russian physiological journal) 2004. T. 90. № 11. S. 1348–1355.
  21. Stefanova N. Ob invariantnosti zritel'nyh obrazov (Concerning visuan images invariance) // V sb. "2-ja nacional'naja konferencija bolgarskogo obshestva fiziologov". (In proceedings of 2nd national conference of Bulgarian Psychological Society) Sofija. № 97. Р. 19. 1964.
  22. Stefanova N. Znachenie priznaka velichiny v processe uznavanija zritel'nyh ob'ektov (The role of size attribute in the process of visual objects recognition) // V sb. "Issledovanie principov pererabotki informacii v zritel'noj sisteme". (In collective work "A study of principles of information processing in visual system") L., 1970. S. 161.
  23. Fokin V. A., Shelepin Ju. E., Harauzov A. K., Sevost'janov A. V., Trufanov G. E., Pronin S. V. Aktivacija oblastej kory golovnogo mozga cheloveka, aktiviruemyh pri vosprijatii uporjadochennyh i haotichnyh izobrazhenij (Human brain cortical zones activation during perception of ordered and chaotic images) // Rossijskij fiziologicheskij zhurnal. (Rusian Psychological Journal) 2007. T. 93. № 10. S. 1089–1100.
  24. Cukkerman I. I. Statisticheskaja struktura izobrazhenij i osobennosti zritel'nogo vosprijatija (Static structure of images and visual perception features) // V kn.: Pererabotka informacii v zritel'noj sisteme. (In: Information processing in visual system) L.: Nauka, 1975. S. 213–215.
  25. Cukkerman I. I. O soglasovannosti prostranstvenno-chastotnyh fil'trov zritel'nogo analizatora so statistikoj izobrazhenij (Concerning congruence of spatial frequency filters of visual analyzer and image statistics) // Biofizika. (Biophysics) 1978. T. 23. № 6. S. 1108–1109.
  26. Shevelev I. A., Kamenkovich V. M., Sharaev G. A. Otnositel'noe znachenie linij i uglov geometricheskih figur dlja ih opoznanija chelovekom (Relative meaning of geometrical figures lines and angles for their identification in human) // Zhurn. vyssh. nervn. dejatel'nosti. (Journal of Higher Nervous Activity) 2000. T. 50. № 3. 403 s.
  27. Shevelev I. A., Kamenkovich V., Lazareva N., Novikova R., Tihomirov A., Sharaev G. Psihofizicheskoe i nejrofiziologicheskoe issledovanie opoznanija nepolnyh izobrazhenij (Psychophysical and neurophysiological study of partial images identification) // Sensornye sistemy. (Sensory systems) 2003. T. 17. №4. S. 339–346.
  28. Shevelev I. A., Kamenkovich V. M., Lazareva N. A., Sharaev G. A., Novikova R. V., Tihomirov A. S. Vosprijatie nepolnyh figur i otvety striarnyh nejronov na priznaki izobrazhenij vtorogo porjadka (Perception of partial figures and striatum neurons responces to second-order image features) // V sb. trudov 18-go s'ezda fiziologicheskogo obshestva imeni I. P. Pavlova. (In Proceedings of 18th Congress of I. P. Pavlov Physiological society) Kazan', 2001. S. 275–276.
  29. Shelepin Ju. E. Lokalizacija oblastej zritel'noj kory koshki, dajushih invariantnyj otvet pri izmenenii razmera izobrazhenija (Localization of visual cortex areas that respond invariable on image size change in cats) // Nejrofiziologija. (Neurophysiology) 1973. T. 5. № 2. S. 115–121.
  30. Shelepin Ju. E. Sopostavlenie topograficheskih i prostranstvenno-chastotnyh harakteristik lateral'noj suprasil'vievoj i striarnoj kory koshki (Comparison of topographical and spatial frequency characteristics of lateral suprasylvian and striate cortex in cats) // Nejrofiziologija. (Neurophysiology) 1984. T. 16. № 1. S. 35–41.
  31. Shelepin Ju. E., Bondarko V. M., Danilova M. V. Konstrukcija foveoly i model' piramidal'noj organizacii zritel'noj sistemy (Foveola construction and visual system pyramidal organization model) // Sensornye sistemy. (Sensory systems) 1995. T. 9. № 1. S. 87–97.
  32. Shelepin Ju. E., Chihman V. N., Foreman N. Analiz issledovanij vosprijatija fragmentirovannyh izobrazhenij: celostnoe vosprijatie i vosprijatie po lokal'nym priznakam (Analysis of studies in partial images perception: holistic perception and local features based perception) // Rossijskij fiziologicheskij zhurnal. (Russian Physiological Journal) T. 94. № 7. S. 758–776. 2008.
  33. Barlow H. B. The neurologic of matching filters. Journal of optical technology. V. 66. № 9. P. 776–781.
  34. Barlow H. B. The efficiency of detecting changes of density in random dot patterns // Vision Research. 1978. V. 18. P. 637–650.
  35. Barlow H. B., Reeves B. C. The versatility and absolute efficiency of detecting mirror symmetry in random dot displays // Vision Research. 1979. V. 19. P. 783–793.
  36. Barlow H. B. The absolute efficiency of perceptual decision // Philosophical Transactions of the Royal Society, London B. 1980. 290. P. 71–82.
  37. Biederman I., Cooper E. E. Evidence for complete translational and reflectional invariance in visual object priming // Perception. 1991. V. 20. P. 585–593.
  38. Biederman I., Cooper E. E. Priming contour)deleted images: Evidence for intermediate representations in visual object recognition // Cognitive Psychology. 1991. № 23. P. 393–419.
  39. Bohm D. The special theory of relativity. Benjamin Inc., N. Y., 1965 .
  40. Braddick O. J., Birtles D., Mills S., Warshafsk, J., Wattam; Bell J. & Atkinson J. Brain responses to global perceptual coherence // Journal of Vision. 2006. V. 6. № 6. P. 426.
  41. Braddick O. & Atkinson J. Development of brain mechanisms for visual global processing and object segmentation. In C. von Hofsten & K. Rosander (eds.). From action to cognition. Progress in Brain Research. (PP. 151–168). Amsterdam, Elsevier. 2007.
  42. Braddick O., Wattam; Bell J., Birtles D., Atkinson J., von Hofsten C. & Nystrem P. High-density VERPs show distinct mechanisms for global form and motion processing in adults and infants // Journal of Vision. 2007. V. 7. №9. P. 772.
  43. Burgess A., Wagner R., Jennings R., Barlow H. Efficiency of human visual signal discrimination // Science. 1981. V. 214. P. 93–94.
  44. Burt P., Adelson E. The Laplacian Pyramid as a Compact Image Code // IEEE Transactions on communications. 1983. № 4. Com-31.
  45. Cantoni V., Petrosino A. Neural Recognition in a Pyramidal Structure // IEEE Transactions on neural networks. 2002. V. 13. № 2.
  46. Cavanagh P. Size and Position Invariance in the Visual System // Perception. 1978. № 7. P. 167–177.
  47. Chikhman V., Shelepin Y., Foreman N., Merkuljev A., Pronin S. «Incomplete figure perception and invisible masking» // Perception. 2006.V. 35. № 11. P. 1441–1457.
  48. Dow B. M., Snyder A. Z., Vautin R. G. Magnification Factor and Receptive Field Size in Foveal Striate Cortex of the Monkey // Exp Brain Res. 1981. № 44. P. 213–228.
  49. Edelman S., Bulthoff H. Orientation Dependence in the recognition of familiar and novel views of 3D objects. // Vision Res. 1992. №.32. P. 2385–2400.
  50. Edelman S., Weinshall D. A self-organizing multiple-view representation of 3D objects // Biological Cybernetics. 1991. № 64.P. 209–219.
  51. Fiser J., Biederman I. Size invariance in visual object priming of gray-scale images // Perception. 1995. V. 2. №7. P. 741–748.
  52. Fize D., Vanduffel W., Nelissen K., et al. The Retinotopic Organization of Primate Dorsal V4 and Surrounding Areas: A Functional Magnetic Resonance Imaging Study in Awake Monkeys // The Journal of Neuroscience. 2003. V. 23. № 19. P. 7395–7406.
  53. Foreman N. Correlates of performance on the Gollin and Mooney tests of visual closure // The Journal of General Psychology. V. 118. № 1. P. 13–20. 1991.
  54. Foreman N., Hemmings R. The Gollin incomplete figures test: a flexible, computerized version //Perception. 1987. № 16. Р. 543–548.
  55. Fraisse P., Piaget J. (Editors) Troite de psychologie experimentale // Presses universitaires de France.
  56. Gerbino W., Fantoni C. Visual interpolation is not scale invariant // Vision Res. 2006. V. 46. № 19. Р. 3142–3159.
  57. Gollin E. S. Developmental studies of visual recognition of incomplete object // Perceptual and Motor Skills. 1960.№11. Р. 289–298.
  58. Hebb D. The Organization of Behavior. N. Y., 1949.
  59. Hebb D. A neuropsychological theory // Psychology: A Study of a Science. N. Y., 1959.
  60. Hebb D. Intelligence, brain and the theory of mind // Brain. 1959. V. 82.
  61. Hubel D. H., Wiesel T. N. Uniformity of monkey striate cortex: A parallel relationship between field size, scatter and magnification factor // J. Comp. Neurol. 1974. V. 158. № 3. P. 295–306.
  62. Hummel J., Biederman I. Dynamic binding in a neural network for shape recognition // Psychological Review. 1992. V. 99. P. 480–517.
  63. Krasilnikov N. N., Krasilnikova O. I., Shelepin Y. E. Perception of achromatic, monochromatic, pure chromatic and chromatic noisy images by real human-observer under threshold conditions // Proceedings of SPIE. Medical Imaging 2000. San Diego, California, 2000. V. 3981. P. 78–85.
  64. Krasilnikova O. I., Krasilnikov N. N., Shelepin Y. E. Objects complexity and visual efficiency // Perception. 2000. V. 29 (suppl.). P. 23.
  65. Lazareva O., Wasserman E., Biederman I. The pigeons and humans are more sensitive to nonaccidental than to metric changes in visual objects. Behave processes. 2008. V. 77. № 2. P. 199–209.
  66. Lowe D. G. Distinctive image features from scale-invariant key points // IJCV. 2004. V. 60. № 2. Р. 91–110.
  67. Marr D. Zrenie (Vision) M.: Padio i svyaz, 1987, 400 s.
  68. Mehanian С., Steven J. Rak. Bidirectional log-polar mapping for invariant object recognition. Proc. SPIE – The International Society for Optical Engineering // SPIE. 1991.№ 1471.Р. 200.
  69. Murphy T. M., Finkel L. H. Shape representation by a network of V4-like cells // Neural Networks. 2007. V. 20. Issue 8. Р. 851–867.
  70. Patterson M. B., Mack J. L., Schnell A. H. Performance of elderly and young normals on the Gollin Incomplete Pictures Test // Perceptual and Motor Skills. 1999. V. 89. № 2. Р. 663–664.
  71. Poggio T., Edelman S. A network that learns to recognize 3D objects // Nature. 1990. V. 343. P. 263–266.
  72. Polimeni J.R., Balasubramanian M., and. Schwartz E. L. Multi-area visuotopic map complexes in macaque striate and extra-striate cortex // Vision research. 2006. V. 46. № 20. Р. 3336–3359.
  73. Ross J., Jenkins B., Johnstone J. R. Size constancy fails below half a degree // Nature. 1980. V. 283. № 5746. Р. 473–474.
  74. Schwartz E. L. Computational anatomy and functional architecture of striate cortex: a spatial mapping approach to perceptual coding // Vision Res. 1980. № 20. P. 645–669.
  75. Schwartz E. L. Cortical mapping and perceptual invariance: a reply to Cavanagh // Vision Res. 1983. V. 23. №8. Р. 831–835.
  76. Shelepin Y. E., Krasilnikov N. N., Krasilnikova O. I., Chihman V. N. What Visual Perception Model is Optimal in Terms of Signal-to-Noise Ratio? Proceedings of SPIE // Medical Imaging. San Diego, California, 2000. №3981.Р. 161–169.
  77. Shepard R., Cooper L. Mental images and their transformation. Cambridge: MIT Press, 1983.
  78. Skottun B. C., Freeman R. D. Perceived size of letters depends on inter-letter spacing: a new visual illusion // Vision Res. 1983. № 23. Р. 111–112.
  79. Srinivas K. Size and reflection effects in priming: a test of transfer appropriate processing // Memory and Cognition. 1996. № 24. Р. 441–452.
  80. Singh M., Fulvio J. Bayesian contour extrapolation: Geometric determinations of good continuation // Vision Res. 2007. V. 47. P. 783–798.
  81. Stefanova N. Effects of the angle of rotation of visual objects on recognitionin a time-deficit situation // Visual information processing. Sofia, 1974. P. 109–114.
  82. Sutherland N. S. The representation of three)dimensional objects // Nature. 1979. V. 278. P. 395– 398.
  83. Sutherland N. C. Theories of shape discrimination in octopus // Nature. 1960. № 186. P. 840.
  84. Sutherland N. S. Outlines of a theory of visual pattern recognition in animals and man // Proc. Roy. Soc. 1968. B. 171. P. 297–317.
  85. Tarr M., Williams P., Hayward W., Gauthier I. Three-dimensional object recognition is viewpoint dependent. // Nature Neuroscience. 1998. № 1. Р. 275–277.
  86. Ullman S. Aligning pictorial descriptions: An approach to object recognition // Cognition. 1989. № 32. Р. 193–254.
  87. Ullman S. High-level Vision. Cambridge, MA:MIT, 1996.
  88. Van Nes F., Bouman M. Variation of contrast sensitivity with luminance // Journal of Optical Society of America. 1967. V. 57. P. 401–406.
  89. Wang G., Obama S., Yamashita W., Sugihara T., Tanaka K. Prior experience of rotation is not required for recognizing objects seen from different angles // Nature. Neuroscience. 2005. V. 8. № 12. P. 1568–1574.
  90. Weiman C. F. R. Log-polar vision for mobile robot navigation. Electronic Imaging. 1990. 90 Conf., Р. 382–385.
  91. Wilson J. R., Sherman S. M. Receptive-field characteristics of neurons in cat striate cortex: Changes with visual field eccentricity // Journal of Neurophysiology. 1976. V. 39. № 3. P. 512–533.
  92. Zokai S., Wolberg G. Image registration using log-polar mappings for recovery of large-scale similarity and projective transformations // Image Processing, IEEE Transactions. 2005. V. 14. № 10. P. 1422–1434.

Information About the Authors

Yuriy E. Shelepin, Doctor of Medicine, Professor, Head of the Laboratory of Physiology of Vision, I.P. Pavlov Institute of Physiology, RAS, St.Petersburg, Russia

Valerii N. Chikhman, PhD in Engineering, Senior Research Associate, Head of Laboratory of Informational Technologies and Mathematical Modeling, Pavlov Psychological Institute of Russian Academy of Science, St.Petersburg, Russia, ORCID: https://orcid.org/0000-0002-4955-4608, e-mail: v_c_pavlinst@mail.ru

O. A. Vakhrameeva

Sergey V. Pronin, Associate of the Laboratory of Physiology of Vision, I.P. Pavlov Institute of Physiology, RAS, Russia, e-mail: Pronins@sbor.net

Nigel Foreman, Professor at School of Health and Social Sciences, Middlesex University, London, Great Britain, e-mail: n.foreman@mdx.ac.uk

Peter Passmore, Lecturer at School of Health and Social Sciences, Middlesex University, London, Great Britain, e-mail: p.passmore@mdx.ac.uk

Metrics

Views

Total: 8410
Previous month: 26
Current month: 15

Downloads

Total: 1766
Previous month: 2
Current month: 3