Experimental study of working memory in children and adults in the task of delayed reproduction of visual presented sequences



The results of experimental study of memorizing and delayed reproduction (copying) of unfamiliar contour shapes in children and adult subjects are presented in the article. We analyzed the age-related characteristics of retention of the shapes (sequences) in working memory. 21 children (average age 7.2 y.o) participated in the experiment. They were shown trajectories (consisted of 6 vertical and horizontal lines) and were asked to remember and to reproduce them after acoustical go signal (short click). Go signal was delayed relatively to the end of trajectories exposure by T = 0, 500, 1000, 2000 or 4000 ms. We analyzed the number of errors, reaction time (RT), mean movement time (MT) along a single segment of trajectory, and the mean dwell time (DT) in the vertices of the trajectory. We compared the results with the analogous data collected previously in the sample of adult subjects. The analysis shows that children made more errors. Beside among children the accuracy of the reproduction decreases whit increasing of the delay of go signal. Also it is shown that RT depends on the delay T, and the shape of the dependence is similar among both children and adults. The results allow to assume the transformation of primary sensory-specific representation in an abstract representation of the sequence both in children and in adults. This work was supported by grant RSF № 14-18-037037.

General Information

Keywords: working memory, primary schoolchildren, serial order, inner representation

Journal rubric: Cognitive Psychology

Article type: scientific article

DOI: https://doi.org/10.17759/exppsy.2017100105

For citation: Korneev A.A., Lomakin D.I. Experimental study of working memory in children and adults in the task of delayed reproduction of visual presented sequences. Eksperimental'naâ psihologiâ = Experimental Psychology (Russia), 2017. Vol. 10, no. 1, pp. 53–66. DOI: 10.17759/exppsy.2017100105. (In Russ., аbstr. in Engl.)


  1. Antonova A.A., Absatova K.A., Korneev A.A., Kurganskii A.V. Otsrochennoe dvigatel'noe vosproizvedenie nezamknutykh poligonov, zadannykh staticheskim i dinamicheskim zritel'nym obraztsom: sravnenie detei 9–11 let i vzroslykh [A delayed motor production of open chains of linear strokes presented visually in static and dynamic modes: a comparison between 9 to 11 years old children and adults.]. Fiziologiya cheloveka [Human Physiology]. 2013, vol. 41, no. 2, p. 38–45 (In Russian; abstract in English)
  2. Zaitsev A.V., Lupandin V.I., Surina O.E. Vozrastnaya dinamika vremeni reaktsii na zritel'nye stimuli [Age Dynamics of the Time of Reaction to Visual Stimuli]. Fiziologiya cheloveka [Human Physiology]. 1999, vol. 25, no. 6, p. 34–37.
  3. Korneev A. A., Kurganskii A. V. Vnutrennyaya reprezentatsiya serii dvizhenii pri vosproizvedenii staticheskogo risunka i traektorii dvizhushchegosya ob»ekta [Internal Representation of Movement Sequences on Reproduction of Static Drawings and the Trajectories of Moving Objects]. Zhurn. vyssh. nerv. deyatel’nosti im. IP Pavlova [IP Pavlov Journal of Higher Nervous Activity]. 2013, vol. 63, no. 4, p. 437–450.
  4. Korneev A.A., Lomakin D.I., Kurganskii A.V. Otsrochennoe kopirovanie neznakomykh konturnykh izobrazhenii: otrazhaet li ubyvanie vremeni reaktsii s rostom zaderzhki izmenenie vnutrennego predstavleniya budushchego dvizheniya [Delayed Copying of Unfamiliar Contour Shapes: Does Reaction Time Decrease with Growing Delay Reflect a Change in Internal Representation Of Fothcoming Movement?]. Zhurn. vyssh. nerv. deyatel’nosti im. IP Pavlova [IP Pavlov Journal of Higher Nervous Activity]. 2016, vol. 66, no 1, p. 51–61.
  5. Semenova O. A., Koshel'kov D. A., Machinskaya R. I. Vozrastnye izmeneniya proizvol'noi regulyatsii deyatel'nosti v starshem doshkol'nom i mladshem shkol'nom vozraste [Age-Specific Changes of Activity Self-Regulation in Preschool-Age and Early School-Age Children]. Kul’turno-istoricheskaya psikhologiya [Cultural-Historical Psychology]. 2007, no 4, p. 39–49.
  6. Alloway T. P., Alloway R. G. Investigating the predictive roles of working memory and IQ in academic attainment. Journal of experimental child psychology. – 2010, vol. 106, no 1, p. 20–29. doi: 10.1016/j. jecp.2009.11.003
  7. Baddeley A. D., Hitch G. J. Developments in the concept of working memory. Neuropsychology. 1994, vol. 8, no 4, p. 485–493. doi: 10.1037/0894-4105.8.4.485
  8. Baddeley A. D., Hitch G. Working memory. Psychology of learning and motivation. 1974, vol. 8, p. 47–89.
  9. Bays P. M., Husain M. Dynamic shifts of limited working memory resources in human vision. Science. 2008, vol. 321, no 5890, p. 851–854. doi: 10.1126/science.1158023
  10. Diamond A. The early development of executive functions. In E. Bialystock & F. I. M. Craik (ed.), Lifespan cognition: Mechanisms of change. Oxford, England: Oxford University Press, 2006, p. 70–95.
  11. Heyes S. B., Zokaei N., van der Staaij I., Bays P. M., Husain M. Development of visual working memory precision in childhood. Developmental science. 2012, vol. 15, no 4, p. 528–539. doi: 10.1111/j.1467- 7687.2012.01148.x
  12. Heyes S. B., Zokaei N., Husain M. Longitudinal development of visual working memory precision in childhood and early adolescence. Cognitive Development. 2016, vol. 39, p. 36–44. doi: 10.1016/j. cogdev.2016.03.004
  13. Hurlstone M. J., Hitch G. J., Baddeley A. D. Memory for serial order across domains: An overview of the literature and directions for future research. Psychological bulletin. 2014, vol. 140, no 2, p. 339–373. doi: 10.1037/a0034221
  14. Hurlstone M. J., Hitch G. J. How is the serial order of a spatial sequence represented? Insights from transposition latencies. Journal of Experimental Psychology: Learning, Memory, and Cognition. 2015, vol. 41, no 2, p. 295–324. doi: 10.1037/a0038223
  15. Kiselev S., Espy K. A., Sheffield T. Age-related differences in reaction time task performance in young children. Journal of Experimental Child Psychology. 2009, vol. 102, no 2, p. 150–166. doi: 10.1016/j. jecp.2008.02.002
  16. Los S. A., Horoufchin H. Dissociative patterns of foreperiod effects in temporal discrimination and reaction time tasks. The Quarterly Journal of Experimental Psychology. 2011, vol. 64, no 5, p. 1009–1020. doi:  10.1080/17470218.2010.532225
  17. Meulemans T., Van der Linden M., Perruchet P. Implicit sequence learning in children. Journal of experimental child psychology. 1998, vol. 69, no 3, pp 199–221. doi: 10.1006/jecp.1998.2442
  18. Nelson K. Development of representation in childhood/ E. Bialystock & F. I. M. Craik (ed.), Lifespan cognition: Mechanisms of change. Oxford, England: Oxford University Press, 2006, p. 178–192.
  19. Pickering S. J. The development of visuo-spatial working memory. Memory. 2001, vol. 9, no 4–6, p. 423– 432. doi: 10.1080/09658210143000182
  20. Repovš G., Baddeley A. The multi-component model of working memory: explorations in experimental cognitive psychology. Neuroscience. 2006, vol. 139, no 1, p. 5–21. doi: 10.1016/j.neuroscience.2005.12.061
  21. Schutte A. R., Spencer J. P. Tests of the dynamic field theory and the spatial precision hypothesis: Capturing a qualitative developmental transition in spatial working memory. Journal of Experimental Psychology: Human Perception and Performance. 2009, vol. 35, no 6, p. 1698–1725. doi: 10.1037/a0015794
  22. Simmering V. R., Patterson R. Models provide specificity: Testing a proposed mechanism of visual working memory capacity development. Cognitive development.  2012,  vol.  27,  no  4,  p.  419–439. doi: 10.1016/j.cogdev.2012.08.001
  23. Spelke, E. S. What makes us smart? Core knowledge and natural language. In D. Gentner & S. Goldin- Meadow (ed.), Language in mind: Advances in the study of language and thought. Cambridge, MA: MIT Press., 2003, pp. 277–312
  24. Verwey W. B., Shea C. H., Wright D. L. A cognitive framework for explaining serial processing and sequence execution strategies. Psychonomic bulletin & review. 2015, vol. 22, no 1, p. 54–77. doi: 10.3758/ s13423-014-0773-4

Information About the Authors

Alexey A. Korneev, PhD in Psychology, Senior Research Fellow, Laboratory of Neuropsychology, Department of Psychology, Lomonosov Moscow State University, Moscow, Russia, ORCID: https://orcid.org/0000-0001-6389-8215, e-mail: korneeff@gmail.com

Dmitrii I. Lomakin, Researcher, Laboratory of Neurophysiology of Cognitive Processes, Institute of Developmental Physiology, Moscow, Russia, ORCID: https://orcid.org/0000-0003-0382-8172, e-mail: lomakindima4@gmail.com



Total: 3113
Previous month: 9
Current month: 5


Total: 1666
Previous month: 3
Current month: 3