Age-Related Dynamics of Crossmodal Priming

64

Abstract

The study is aimed at studying at determining the temporal dynamics of crossmodal priming in preschool children. The study involved 60 children aged 4 to 6 years (M = 5.6; SD = 1.2) and 20 adult subjects aged 17 to 23 years (M = 20.4; SD = 2.6). The priming paradigm was used as a research model. In this study, we determined the influence of a priori visual stimulation on the speed and accuracy of identification of test sounds, depending on the congruence of their combination with visual objects and the interval between the test and prime stimuli. In the course of the study, it was found that in 4-year-old children, a priori visual information leads to a decrease in the accuracy and speed of reaction to test sound stimuli - a negative priming effect. The magnitude of the negative priming effect decreases with an increase in the interval between prime and test stimuli. In 5-year-old children, the number of errors increases only when incongruent combinations of stimuli are presented - a negative priming effect. On the contrary, the reaction time decreases only in congruent trials with when the test stimulus is delayed relative to the prime by 150-500 ms — a positive priming effect. In 6-year-old children and adults, the accuracy of the reaction does not change, and the reaction rate significantly increases in congruent trials positive priming effect) and decreases in incongruent trials (negative priming effect). The observed dynamics of changes in the interaction of sound and visual stimulation testifies to the formation of mechanisms of attention and multisensory integration in preschool children.

General Information

Journal rubric: Cognitive Psychology

Article type: scientific article

DOI: https://doi.org/10.17759/exppsy.2022150405

Funding. The reported study was funded by Russian Foundation for Basic Research (RFBR), project number 17-06-00644-ОГН.

Received: 17.06.2021

Accepted:

For citation: Cherenkova L.V., Sokolova L.V. Age-Related Dynamics of Crossmodal Priming. Eksperimental'naâ psihologiâ = Experimental Psychology (Russia), 2022. Vol. 15, no. 4, pp. 84–98. DOI: 10.17759/exppsy.2022150405. (In Russ., аbstr. in Engl.)

References

  1. Il’ina M.N. Psikhologicheskaya otsenka intellekta u detei [Psychological evaluation of intelligence in children]. Saint Petersburg: Piter, 2009. 366 p. (In Russ.).
  2. Machinskaya R.I. Neirofiziologicheskie mekhanizmy proizvol'nogo vnimaniya (Analiticheskii obzor) // Zhurn. vyssh. nervn. deyat. 2003. V. 53. № 2. P. 133—150. (In Russ.).
  3. Machinskaya R.I., Krupskaya E.V. Sozrevanie regulyatornykh struktur mozga I organizatsiya vnimaniya u detei mladshego shkol'nogo vozrasta // Kognitivnye issledovaniya: sb. nauch. tr. Vyp. 2. M.: Publishing House: "Institute of Psychology of the Russian Academy of Sciences", 2008. P. 32—48. (In Russ.).
  4. Semenova O.A., Machinskaya R.I. Osobennosti regulyatornykh komponentov poznavatel'noi deyatel'nosti u detei 5—10 let s izmeneniyami elektricheskoi aktivnosti mozga limbicheskogo proiskhozhdeniya // Zhurnal vysshei nervnoi deyatel'nosti im. I.P. Pavlova. 2016. V. 66. № 4. P. 458—469. DOI:10.7868/S0044467716040109 (In Russ.).
  5. Barutchu A., Spence C., Humphreys G.W. Multisensory enhancement elicited by unconscious visual stimuli. Exp Brain Res., 2018. Vol. 236, no. 3, pp. 409—417. DOI:10.1007/s00221-017-5140-z
  6. Bauer A.-K.R., Debener S., Nobre A.C. Synchronisation of Neural Oscillations and Cross-modal Influences. Trends in Cognitive Sciences, 2020. Vol. 24, no. 6, pp. 481—495. DOI:10.1016/j.tics.2020.03.003
  7. Beker S., Foxe J.J., Molholm S. Ripe for solution: Delayed development of multisensory processing in autism and its remediation. Neuroscience and Biobehavioral Reviews, 2018. Vol. 84, no. 1, pp. 182—192. DOI:10.1016/j.neubiorev.2017.11.008
  8. Colonius H., Diederich A. Recalibration of the Multisensory Temporal Window of Integration. Procedia — Social and Behavioral Sciences, 2014. Vol. 126, no. 21, pp. 67—68. DOI:10.1016/j.sbspro.2014.02.318
  9. Cowie D., McKenna A., Bremner A., Aspell, J. The development of bodily self-consciousness: Changing responses to the Full Body Illusion in childhood. Developmental Science, 2017. Vol. 21, no. 3, pp. 1—12. DOI:10.1111/desc.12557
  10. Flom R., Hyde D.C. Recent advances in multisensory development. Journal of Experimental Child Psychology, 2021. Vol. 201, no. 1, pp. 104—983. DOI:10.1016/j.jecp.2020.104983
  11. Gori M. Multisensory integration and calibration in children and adults with and without sensory and motor disabilities. Multisensory Research, 2015. Vol. 28, no. 1-2, pp. 71—99. DOI:10.1163/22134808-00002478
  12. Greenfield K., Ropar D., Themelis K., Ratcliffe N., Newport R. Developmental changes in sensitivity to spatial and temporal properties of sensory integration underlying body representation. Multisensory research, 2017. Vol. 30, no. 6, pp. 467—484. DOI:10.1163/22134808-00002591
  13. 13.Curtindale L.M., Bahrick L.E., Lickliter R., Colombo J. Effects of multimodal synchrony on infant attention and heart rate during events with social and nonsocial stimuli. Journal of Experimental Child Psychology, 2019. Vol. 178, no. 1, pp. 283—294. DOI:10.1016/j.jecp.2018.10.006
  14. Jensen A., Merz S., Spence C., Frings C. Overt spatial attention modulates multisensory selection. Journal of Experimental Psychology: Human Perception and Performance, 2019. Vol. 45, no. 2, pp.174—188. DOI:10.1037/xhp0000595
  15. Jones L.B., Rothbart M.K., Posner M.I. Development of executive attention in preschool children. Developmental Science. 2003. Vol. 6. № 5. P. 498—504. DOI:10.1111/1467-7687.00307
  16. Labossière D.I., Leboe-McGowan J.P. Specific and non-specific match effects in negative priming. Acta Psychologica, 2018. Vol. 182, no. 1, pp. 138—153. DOI:10.1016/j.actpsy.2017.10.009
  17. Lewkowicz D.J. Early experience and multisensory perceptual narrowing. Developmental Psychobiology, 2014. Vol. 56, no. 2, pp. 292—315. DOI:10.1002/dev.21197
  18. Mercier M.R., Molholm S., Fiebelkorn I.C., Butler J.S., Schwartz T.H., Foxe J.J. Neurooscillatory phase alignment drives speeded multisensory response times: an electrocorticographic investigation. Journal of Neuroscience. 2015. Vol. 35. № 22. Р. 8546—8557. DOI:10.1523/JNEUROSCI.4527-14.2015
  19. Murphy J.W., Foxe J.J., Molholm S. Neuro‐oscillatory mechanisms of intersensory selective attention and task switching in school‐aged children, adolescents and young adults. Developmental science, 2016. Vol. 19, no. 3, pp. 469—487. DOI:10.1111/desc.12316
  20. Posner M.I., Rothbart M.K. Research on attention networks as a model for the integration of psychological science. Annual Review of Psychology. 2007. Vol. 58. P. 1—23. DOI:10.1146/annurev.psych.58.110405.085516
  21. Querne L., Vernier-Hauvette M.-P., Berquin P. Development of phasic attention in children: Temporal analysis of alert during a detection task [Электронный ресурс]. Current psychology letters. Behaviour, brain & cognition. 2009. Vol. 25. № 1. P. 1—18. URL:http://cpl.revues.org/4800 (Accessed18.01.2017).
  22. Rohe T., Ehlis A.-C., Noppeney U. The neural dynamics of hierarchical Bayesian causal inference in multisensory perception. Nature Communications, 2019. Vol. 10, no. 1, pp. 1—17. DOI:10.1038/s41467-019-09664-2
  23. Rueda M.R., Rothbart M.K., McCandliss B.D. Training, maturation, and genetic influences on the development of executive attention. Proceedings of the National Academy of Sciences of the USA. 2005. Vol. 102. № 41. P. 14931—14936. DOI:10.1073/pnas.0506897102
  24. Simon D.M., Noel J.P., Wallace M.T. Event related potentials index rapid recalibration to audiovisual temporal asynchrony. Front Integr. Neurosci., 2017. Vol. 11, no. 1, pp. 8—12. DOI:10.3389/fnint.2017.00008
  25. Spence C., Frings C. Multisensory feature integration in (and out) of the focus of spatial attention. Attention, Perception, & Psychophysics, 2020. Vol. 82, no. 1, pp. 363—376. DOI:10.3758/s13414-019-01813-5016

Information About the Authors

Ludmila V. Cherenkova, Doctor of Biology, Professor of the Department of High Nervous Activity and Psychophysiology, Saint-Petersburg State University, St.Petersburg, Russia, ORCID: https://orcid.org/0000-0002-9010-1010, e-mail: chluvic@mail.ru

Lyudmila V. Sokolova, профессор кафедры высшей нервной деятельности и психофизиологии, Санкт-Петербургский государственный университет (ФГБОУ ВО СПбГУ), St.Petersburg, Russia, ORCID: https://orcid.org/0000-0001-5284-3374, e-mail: lsokolova2021@mail.ru

Metrics

Views

Total: 331
Previous month: 26
Current month: 13

Downloads

Total: 64
Previous month: 6
Current month: 2