Features of Visual Information Processing in Patients with Schizophrenia in the Early Stages



We performed the analysis of electrophysiological markers of visual information processing in schizophrenia. The relevance of this work is determined by the advantages of combining of the method of cognitive visual evoked potentials and the method of spatial-frequency filtering of images with different semantics in order to detect disorders. This method allows assessing of the functional state of the visual system in the early stages of cognitive impairment, based on the objective electrophysiological methods. We studied the nature of changes in the amplitudes of the components of evoked potentials in response to the presentation of a combination of stimuli with different spatial-frequency and semantic characteristics (objects of animate and inanimate nature) in patients with schizophrenia in the early stages. The obtained data indicated a predominant decrease in the activity of the "high-frequency" parvo system, which manifests itself in a perception disorder and the abnormality of processing of small images and their details. Also, we obtained data in patients with schizophrenia that signifies an abnormality of the involuntary classification of images of objects of animate and inanimate nature. The obtained result is important for the understanding of the features of visual information processing in patients with schizophrenia in the early stages of the disease and the development of methods of cognitive impairments measuring.

General Information

Keywords: cognitive visual evoked potentials, low and high spatial frequency, stimuli of animate and inanimate nature, schizophrenia

Journal rubric: Psychophysiology

Article type: scientific article

DOI: https://doi.org/10.17759/exppsy.2023160103

Funding. The work was supported by the State Program 47 of the State Enterprise "Scientific and Technological Development of the Russian Federation" (2019-2030), topic 0134-2019-0006 (section 63.3).

Received: 26.01.2022


For citation: Murav'eva S.V., Shchemeleva O.V., Lebedev V.S., Vershinina E.A. Features of Visual Information Processing in Patients with Schizophrenia in the Early Stages. Eksperimental'naâ psihologiâ = Experimental Psychology (Russia), 2023. Vol. 16, no. 1, pp. 43–61. DOI: 10.17759/exppsy.2023160103. (In Russ., аbstr. in Engl.)


  1. Vershinina Ye.A., Safarova G.L. O primenenii metodov matematicheskoy statistiki v klinicheskikh i eksperimental'nykh issledovaniyakh [On the application of methods of mathematical statistics in observable experimental studies]. Uspekhi 2019. Vol. 32. № 6. P. 1052—1062.
  2. Kozub K.E., Shelepin Iu.E., Chomskii A.N., Sharybin E.A., Ivanova E.A. A structural and functional study of the retina in patients with schizophrenia. Journal of Ophthalmology. 2020. № 4. P. 38−43.
  3. Kropotov Yu.D., Pronina M.V., Polyakov YU.I., Ponomarev V.A. Funktsional'nyye biomarkery v diagnostike psikhicheskikh zabolevaniy: kognitivnyye vyzvannyye potentsialy [Functional biomarkers in the diagnosis of foodborne diseases: cognitive excitatory potentials]. Fiziologiya 2013. Vol. 39. № 1. P. 14—25.
  4. Moiseyenko G.A., ShelepinYu.Ye., Kharauzov A.K., Pronin S.V., Chikhman V.N., Vakhrameyeva O.A. Klassifikatsiya i raspoznavaniye izobrazheniy zhivoy i nezhivoy prirody [Classification and recognition of images of animate and inanimate nature]. Opticheskiy 2015. Vol. 82. № 10. P. 53—64.
  5. Murav’eva S.V., Deshkovich A.A. & Shelepin Y.E. The human magno and parvo systems and selective impairments of their functions. Neurosci. Behav. Physi. 2009. 39. P. 535—543.
  6. Murav’eva S. V., Pronin S.V., Shelepin Yu.E. Contrast sensitivity of the human visual system // Experimental Psychology. 2010. V. 3. № 3. P. 5—20.
  7. Murav'eva S.V., Pronina M.V., Moiseyenko G.A., Pnevskaya A.N., Polyakov Yu.I., Kropotov Yu.D., Pronin S.V., Shelepin Ye.Yu., Shelepin Yu.Ye. Issledovaniye zritel'nykh kognitivnykh vyzvannykh potentsialov pri shizofrenii na rannikh stadiyakh zabolevaniya i ikh korrektsiya pri pomoshchi interaktivnykh virtual'nykh sred [Investigation of visual cognitive excited receptors in schizophrenia at the stage of hepatic diseases and their correction using interactive environmental stimuli]. Fiziologiya 2017. Vol. 43. № 6. P. 24—36.
  8. Murav'eva S.V., Moiseyenko G.A., Chomskiy A.N., Sharybin Ye.A., Kropotov Yu.D. Stimulyatsiya raboty zritel'noy sistemy s pomoshch'yu kognitivnoy zadachi v usloviyakh virtual'noy sredy u patsiyentov s shizofreniyey i depressiyey [Stimulation of the visual system using a cognitive task in the natural environment in patients with schizophrenia and depression]. Fiziologiya 2020. Vol. 46. № 5. P. 27—36.
  9. Murav'eva S.V., Kozub K.E., Pronin S.V. Opticheskiye i elektrofiziologicheskiye metody otsenki funktsional'nogo sostoyaniya neyronnykh setey zritel'noy sistemy [Optical and electrophysiological techniques for functional assessment of vision system neuronal networks]. J. Opt. Technol. 2021. Vol. 88. P. 710—715.
  10. Ponomarev S., Malashin R., Moiseenko G. Recognition of visual stimuli based on automatic EEG processing. J. Opt. Technol. 2018. Vol. 85. № 8. P. 67—76.
  11. Shelepin Yu.E., Kharauzov A.K., Pronin S.V., Vakhrameeva O.A., Chikhman V.N., Fokin V.A., Foreman N. Using neuroimaging methods to localize mechanisms for making decisions concerning the ordering of textures. Journal Optical Technology. 2011. Vol. 78. № 12. P. 808—816.
  12. Andrade G.N., Butler J.S., Peters G.A., Molholm S., Foxe J.J. Atypical visual and somatosensory adaptation in schizophrenia-spectrum disorders. Translational Psychiatry. 2016. Vol. 6. № 5. P. 804.
  13. Ardekani B.A., Nierenberg J., Hoptman M.J., Javitt D.C., Lim K.O. MRI study of white matter diffusion anisotropy in schizophrenia. Neuroreport. 2003. Vol. 14. № 16. P. 2025—2029.
  14. Akbari H., Ghofrani S., Zakalvand P., Tariq Sadiq M. Schizophrenia recognition based on the phase space dynamic of EEG signals and graphical features. Biomedical Signal Processing and Control. 2021. Vol. 69. Article 102917. DOI:10.1016/j.bspc.2021.102917
  15. Barros C., Silva C.A., &Pinheiro A.P. Advanced EEG-based learning approaches to predict schizophrenia: Promises and pitfalls. Artificial Intelligence in Medicine. 2021. Vol. 114. Article 102039. DOI:10.1016/j.artmed.2021.102039
  16. Bosworth R.G., Dobkins K.R. Effects of prematurity on the development of contrast sensitivity: testing the visual experience hypothesis. Vision Research. 2013. Vol. 82. P. 31—41.
  17. Butler P.D., Abeles I.Y., Silverstein S.M., Dias E.C., Weiskopf N.G., Calderone D.J., et al. An event-related potential examination of contour integration deficits in schizophrenia. Front. Psychol. 2013. Vol. 4. P. 132.
  18. Caramazza A., Shelton J.R. Domain specific knowledge systems in the brain: the animate-inanimate distinction. Journ. of Cognitive Neuroscience. 1998. Vol. 10. № 1. P. 1—34.
  19. Catalano L., Wynn J., Lee J., Green M. A comparison of stages of attention for social and nonsocial stimuli in schizophrenia: An ERP study. Schizophrenia Research. 2021. Vol. 238. P. 128—136.
  20. Chatterjee I., Agarwal M., Rana B., et al. Bi-objective approach for computer-aided diagnosis of schizophrenia patients using fMRI data. Multimed. Tools Appl. 2018. Vol. 77. P. 26991—27015. DOI:10.1007/s11042-018-5901-0
  21. Chen Y. Abnormal visual motion processing in schizophrenia: a review of research progress. Schizophr. Bull. 2011. Vol. 37. P. 709—715.
  22. Clarke A., Devereux B.J., Randall B., Tyler L.K. Predicting the Time Course of Individual Objects with MEG. Cerebral Cortex. 2015. Vol. 25. № 10. P. 3602—3612.
  23. Collins E., Freud E., Kainerstorfer J.M., Cao J., Behrmann M. Temporal Dynamics of Shape Processing Differentiate Contributions of Dorsal and Ventral Visual Pathways. Journ. of Cognitive Neuroscience. 2019. Vol. 31. № 6. P. 1—16.
  24. Cruz-Martinez C., Reyes-Garcia C.A., Vanello N. A novel event-related fMRI super voxels-based representation and its application to schizophrenia diagnosis Comput. Methods Prog. Biomed. 2022. Vol. 213. Article 106509. DOI:10.1016/j.cmpb.2021.106509
  25. Dima D., Roiser J.P., Dietrich D.E., Bonnemann C., Lanfermann H., Emrich H.M., et al. Understanding why patients with schizophrenia do not perceive the hollow-mask illusion using dynamic causal modeling. Neuroimage 2009. Vol. 46. P. 1180—1186.
  26. Doniger G.M., Foxe J.J., Murray M.M., Higgins B.A., Javitt D.C. Impaired visual object recognition and dorsal/ventral stream interaction in schizophrenia. Archives of General Psychiatry. 2002. Vol. 59. № 11. P. 1011—1020.
  27. Friston K.J. The disconnection hypothesis. Schizophrenia Research. 1998. Vol. 30. № 2. P. 115—125.
  28. Goshvarpour A., Goshvarpour A. Schizophrenia diagnosis using innovative EEG feature-level fusion schemes. Physical and Engineering Sciences in Medicine. 2020. Vol. 43(1). P. 227—238. DOI:10.1007/s13246-019-00839-1
  29. Grano N., Salmijarvi L., Karjalainen M., Kallionpaa S., Roine M., Taylor P. Early signs of worry: psychosis risk symptom visual distortions are independently associated with suicidal ideation. Psychiatry Res. 2011. Vol. 225. P. 263—267.
  30. Green M.F., Lee J., Wynn J.K., Mathis K.I. Visual masking in schizophrenia: overview and theoretical implications // Schizophr. Bull. 2011. Vol. 37. № 4. P. 700—708.
  31. Javitt D.C. Sensory processing in schizophrenia: neither simple nor intact // Schizophr. Bull. 2009. Vol. P. 1059—1064.
  32. Kaplan O., Lubow R.E. Ignoring irrelevant stimuli in latent inhibition and Stroop paradigms: the effects of schizotypy and gender. Psychiatry Res. 2011. Vol. 186. P. 40—45.
  33. Kelemen O., Kiss I., Benedek G., Keri S., Perceptual and cognitive effects of antipsychotics in first-episode schizophrenia: the potential impact of GABA concentration in the visual cortex. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2013. Vol. 47. P. 13—19.
  34. Khaligh-Razavi S.M., Cichy R.M., Pantazis D., Oliva A. Tracking the Spatiotemporal Neural Dynamics of Real-world Object Size and Animacy in the Human Brain. Journ. of Cognitive Neuroscience. 2018. Vol. 30. № 11. P. 1559—1576.
  35. Kiang M., Gerritsen C.J. The N400 event-related brain potential response: A window on deficits in predicting meaning in schizophrenia. International Journ. of Psychophysiology. 2019. Vol. 145. P. 65—69.
  36. Kiss I., Fabian A., Benedek G., Keri S.When doors of perception open: visual contrast sensitivity in never-medicated, first-episode schizophrenia. J. Abnorm. Psychol. 2010. Vol. 119. P.586—593.
  37. Koch S., Hägele H., Haynes J., Heinz A., Schlagenhauf F., Sterzer P. Diagnostic Classification of Schizophrenia Patients on the Basis of Regional Reward-Related fMRI Signal Patterns. PLoSOne. 2015. Vol. 10(3). Article e0119089. DOI:10.1371/journal.pone.0119089
  38. Kutepov I.E., Dobriyan V.V., Zhigalov M.V., Stepanov M.F., Krysko A.V., Yakovleva T.V., &Krysko V.A. EEG analysis in patients with schizophrenia based on Lyapunov exponents. Informatics in Medicine Unlocked. 2020. Vol. 18. Article 100289. DOI:10.1016/j.imu.2020.100289
  39. Lambon Ralph M.A., Patterson K., Garrard P., Hodges J.R. Semantic dementia with category specificity: a comparative case-series study. Cognitive Neuropsychology. 2003. Vol. 20. P. 307—326.
  40. Laws K.R., Leeson V.C., McKenna P.J. Domain-specific deficits in schizophrenia. Cognitive Neuropsychiatry. 2006. Vol. 11. № 6. P. 537—556.
  41. Maher S., Mashhoon Y., Ekstrom T., Lukas S., Chen Y. Deficient cortical face-sensitive N170 responses and basic visual processing in schizophrenia. Schizophrenia research. 2016 Vol. 170(1). P. 87—94.
  42. Martínez A., Gaspar P.A., Hillyard S.A., Bickel S., Lakatos P., Dias E.C., Javitt D.C. Neural oscillatory deficits in schizophrenia predict behavioral and neurocognitive impairments. Frontiers in Human Neuroscience. 2015. Vol. 9. P. 371.
  43. Oh S.L., Vicnesh J., Ciaccio E.J., Yuvaraj R., & Acharya U.R. Deep Convolutional Neural Network Model for Automated Diagnosis of Schizophrenia Using EEG Signals. Applied Sciences. 2019. Vol. 9(14). P. 2870. DOI:10.3390/app9142870
  44. Oribe N., Hirano Y., Kanba S., Re E.C. del, Seidman L.J., Mesholam-Gately R., Spencer K.M., McCarley R.W., Niznikiewicz M.A. Early and late stages of visual processing in individuals in prodromal state and first episode schizophrenia: An ERP study. Schizophrenia Research. 2013. Vol. 146. P. 95—102.
  45. Perrottelli A., Giordano G.M., Brando F., Giuliani L., Mucci A. EEG-Based Measures in At-Risk Mental State and Early Stages of Schizophrenia: A Systematic Review. Frontiers in Psychiatry. 2021. Vol. 12. P. 582.
  46. Plomp G., Roinishvili M., Chkonia E., Kapanadze G., Kereselidze M., Brand A., Herzog M.H. Electrophysiological evidence for ventral stream deficits in schizophrenia patients. Schizophrenia Bulletin. 2013. Vol. 39. № 3. P. 547—554.
  47. Rassovsky Y., Horan W.P., Lee J.,et al. Pathways between early visual processing and functional outcome in schizophrenia. Psychol. Med. 2011. Vol. 41. P. 487—497.
  48. Robol V., Tibber M.S., Anderson E.J., Bobin T., Carlin P., Shergill S.S., et al. Reduced crowding and poor contour detection in schizophrenia are consistent with weak surround inhibition. PLoS One. 2013. Vol. 8(4). Article e60951.
  49. Sartipi S., Kalbkhani H. & Shayesteh M.G. Diagnosis of schizophrenia from R-fMRI data using Ripplet transform and OLPP. Multimed. Tools Appl.2020. Vol. 79. 23401—23423. DOI:10.1007/s11042-020-09122-y
  50. Silverstein S.M., All S.D., Kasi R., Berten S., Essex B., Lathrop K.L., et al. Increased fusiform area activation in schizophrenia during processing of spatial frequency-degraded faces, as revealed by fMRI. Psychol. Med. 2010b. Vol. 40. P. 1159—1169.
  51. Silverstein S.M., Berten S., Essex B., All S.D., Kasi R., Little D.M., Perceptual organization and visual search processes during target detection task performance in schizophrenia, as revealed by fMRI. Neuropsychologia. 2010a. Vol. 48. P. 2886—2893.
  52. Silverstein S.M., Berten S., Essex B., Kovacs I., Susmaras T., Little D.M. An fMRI examination of visual integration in schizophrenia. J. Integr. Neurosci. 2009. Vol. 8. P. 175—202.
  53. Silverstein S.M., Keane B.P., Perceptual organization impairment in schizophrenia and associated brain mechanisms: review of research from 2005 to 2010. Schizophr. Bull. 2011. Vol. 37. P. 690—699.
  54. Silverstein S.M., Rosen R. Schizophrenia and the eye. Schizophr. Res. Cogn. 2015. Vol. 2. № 2. P. 46—55.
  55. Tanaka H. Face-sensitive P1 and N170 components are related to the perception of two-dimensional and three-dimensional objects. Neuro. Report. 2018. Vol. № 7. P. 583—587.
  56. Tremblay E., Vannasing P., Roy M.S., Lefebvre F., Kombate D., Lassonde M., Lepore F., McKerral M., Gallagher A. Delayed early primary visual pathway development in premature infants: high density electrophysiological evidence. PLoS One. 2014. Vol. 9. № 9. Article e107992.
  57. Vaziri-Pashkam M., Taylor J., Xu Y. Spatial frequency tolerant visual object representations in the human ventral and dorsal visual processing pathways. J. of Cognitive Neuroscience. 2019. Vol. 31. № 1. P. 49—63.
  58. Vitali P., Abutalebi J., Tettamanti M., Rowe J., Scifo P., Fazio F., Cappa S.F., Perani D. Generating animal and tool names: An fMRI study of effective connectivity. Brain and Language. 2005. Vol. 93. P. 32—45.
  59. Wiggett A.J., Pritchard I.C., Downing P.E. Animate and inanimate objects in human visual cortex: Evidence for task-independent category effects. Neuropsychologia. 2009. Vol. 47. № 14. P. 3111—3117.

Information About the Authors

Svetlana V. Murav'eva, PhD in Medicine, Associate Researcher of the Laboratory of Physiology , Pavlov Institute of Physiology, Russian Academy of Sciences, St.Petersburg, Russia, ORCID: https://orcid.org/0000-0003-3901-4138, e-mail: mlanka@freemail.ru

Olga V. Shchemeleva, Researcher, Laboratory of Physiology of Vision, Pavlov Institute of Physiology, Russian Academy of Sciences, St.Petersburg, Russia, ORCID: https://orcid.org/0000-0002-2777-6373, e-mail: oshchemeleva@gmail.com

Vladislav S. Lebedev, PhD Student, Laboratory of Physiology of Vision, Pavlov Institute of Physiology, Russian Academy of Sciences, St.Petersburg, Russia, ORCID: https://orcid.org/0000-0002-6715-4552, e-mail: vlad840708@yandex.ru

Elena A. Vershinina, PhD in Biology, Senior Researcher, Laboratory of Information Technologies and Mathematical Modeling, Pavlov Institute of Physiology, Russian Academy of Sciences, St.Petersburg, Russia, ORCID: https://orcid.org/0000-0002-8873-4409, e-mail: ver_elen@mail.ru



Total: 827
Previous month: 63
Current month: 35


Total: 189
Previous month: 6
Current month: 4