Spatial conceptual mapping of words with temporal semantics



Unlike concrete words related to sensory perception (e.g., hear, sun), abstract words (including the words with temporal semantics, e.g., year, tomorrow) do not have direct embodied sensory correlates. Nevertheless, existing research indicates that abstract concepts’ representations make regular reference to sensorimotor processes, e.g., visual perception. For example, regular expressions such as “the future is ahead” or “the flow of time” are common in different languages reflecting a relatively universal nature of space-time correspondences. Moreover, these regular correspondences are commonly demonstrated in experimental studies; for example — by registering attentional displacement during processing of past and future related words. Here, the main theoretical approaches as well as existing experimental data documenting neurocognitive foundations of space-time representations are reviewed. A detailed overview of research on spatial-conceptual mapping of time concepts in three-dimensional visual space is offered. We also consider features of space-time associations that reflect linguistic and socio-cultural differences. In conclusion, the main areas of current and future that will allow an integration of the existing data within a common theoretical framework are defined.

General Information

Keywords: embodied cognition, temporal words, STEARC, language comprehension, spatial conceptual mapping

Journal rubric: General Psychology

Article type: review article


Funding. The reported study was funded by RFBR, project number 19-313-51023.

For citation: Malyshevskaya A.S., Gallо F., Pokhoday M.Y., Kotrelev P.V., Shtyrov Y.Y., Myachykov A.V. Spatial conceptual mapping of words with temporal semantics [Elektronnyi resurs]. Sovremennaia zarubezhnaia psikhologiia = Journal of Modern Foreign Psychology, 2022. Vol. 11, no. 3, pp. 140–151. DOI: 10.17759/jmfp.2022110313. (In Russ., аbstr. in Engl.)


  1. Fumarola A., Prpic V., Luccio R., Umiltà C. A SNARC-like effect for music notation: The role of expertise and musical instrument. Acta Psychologica, 2020. Vol. 208, article ID 103120, 8 p. DOI:10.1016/j.actpsy.2020.103120
  2. Bender A., Beller S. Mapping spatial frames of reference onto time: A review of theoretical accounts and empirical findings. Cognition, 2014. Vol. 132, no. 3, pp. 342—382. DOI:10.1016/j.cognition.2014.03.016
  3. Bergen B. K., Chan Lau T. T. Writing direction affects how people map space onto time. Frontiers in Psychology, 2012. Vol. 3, article ID 109, 5 p. DOI:10.3389/fpsyg.2012.00109
  4. Bi S., Perkins A., Sprott D. The effect of start/end temporal landmarks on consumers’ visual attention and judgments. International Journal of Research in Marketing, 2021. Vol. 38, no. 1, pp. 136—154. DOI:10.1016/j.ijresmar.2020.04.007
  5. Battelli L., Cavanagh P., Martini P., Barton J. J. S. Bilateral deficits of transient visual attention in right parietal patients. Brain, 2003. Vol. 126, no. 10, pp. 2164—2174. DOI:10.1093/brain/awg221
  6. Boroditsky L. Language and the Construction of Time through Space. Trends in Neurosciences, 2018. Vol. 41, no. 10, pp. 651—653. DOI:10.1016/j.tins.2018.08.004
  7. Bueti D., Walsh V. The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009. Vol. 364, no. 1525, pp. 1831—1840. DOI:10.1098/ rstb.2009.0028
  8. Ding X., Feng N., He T., Cheng X., Fan Z. Can mental time lines co-exist in 3D space? Acta Psychologica, 2020. Vol. 207, no. 1, article ID 103084, 13 p. DOI:10.1016/j.actpsy.2020.103084
  9. Onoe H., Komori M., Onoe K., Takechi H., Tsukada H., Watanabe Y. Cortical networks recruited for time perception: A monkey positron emission tomography (PET) study. Neuroimage, 2001. Vol. 13, no. 1, pp. 37—45. DOI:10.1006/ nimg.2000.0670
  10. De Tommaso M., Prpic V. Slow and fast beat sequences are represented differently through space. Attention, Perception, Psychophys, 2020. Vol. 82, pp. 2765—2773. DOI:10.3758/s13414-019-01945-8
  11. Dehaene S., Bossini S., Giraux P. The Mental Representation of Parity and Number Magnitude. Experimental Psychology: General, 1993. Vol. 122, no. 3, pp. 371—396. DOI:10.1037/0096-3445.122.3.371
  12. He D., He X., Zhao T., Wang J., Li L., Louwerse M. Does Number Perception Cause Automatic Shifts of Spatial Attention? A Study of the Att-SNARC Effect in Numbers and Chinese Months. Frontiers in Psychology, 2020. Vol. 11, article ID 680, 13 p. DOI:10.3389/fpsyg.2020.00680
  13. Dormal V., Seron X., Pesenti M. Numerosity-duration interference: A Stroop experiment. Acta Psychologica, 2006. Vol. 121, no. 2, pp. 109—124. DOI:10.1016/j.actpsy.2005.06.003
  14. Agostino C. S., Zana Y., Balci F., Claessens P. M. E. Effect of presentation format on judgment of long-range time intervals. Frontiers in Psychology, 2019. Vol. 10, article ID 1479, 14 p. DOI:10.3389/fpsyg.2019.01479
  15. Gentner D., Imai M., Boroditsky L. As time goes by: Evidence for two systems in processing space — time metaphors. Language and Cognitive Processes, 2002. Vol. 17, no. 5, pp. 537—565. DOI:10.1080/01690960143000317
  16. Gevers W., Reynvoet B., Fias W. The mental representation of ordinal sequences is spatially organized. Cognition, 2003. Vol. 87, pp. B87—B95. DOI:10.1016/S0010-0277(02)00234-2
  17. Gevers W., Reynvoet B., Fias W. The mental representation of ordinal sequences is spatially organized: evidence from days of the week. Cortex, 2004. Vol. 40, no. 1, pp. B87—B95. DOI:10.1016/S0010-9452(08)70938-9
  18. Hartmann M., Mast F. W. Moving along the mental time line influences the processing of future related words. Consciousness and Cognition, 2012. Vol. 21, no. 3, pp. 1558—1562. DOI:10.1016/j.concog.2012.06.015
  19. Ishihara M., Keller P. E., Rossetti Y., Prinz W. Horizontal spatial representations of time: Evidence for the STEARC effect. Cortex, 2008. Vol. 44, no. 4, pp. 454—461. DOI:10.1016/j.cortex.2007.08.010
  20. Fuhrman O., Mccormick K., Chen E., Jiang H., Shu D., Mao S., Boroditsky L. How Linguistic and Cultural Forces Shape Conceptions of Time: English and Mandarin Time in 3D. Cognitive Science A Multidisciplinary, 2011. Vol. 35, no. 7, pp. 1305—1328. DOI:10.1111/j.1551-6709.2011.01193.x
  21. Kato T., Imaizumi S., Tanno Y. Metaphorical action retrospectively but not prospectively alters emotional judgment. Frontiers in Psychology, 2018. Vol. 9, article ID 1927, 10 p. DOI:10.3389/fpsyg.2018.01927
  22. Lakoff G., Johnson M. Metaphors We Live By. Chicago: University of Chicago Press, 1980, 242 p.
  23. Assmus A., Marshall J. C., Ritzl A., Noth J., Zilles K., Fink G. R. Left inferior parietal cortex integrates time and space during collision judgments. Neuroimage, 2003. Vol. 20, supplement 1, pp. S82—S88. DOI:10.1016/j.neuroimage.2003.09.025
  24. Leon M. I., Shadlen M. N. Representation of Time by Neurons in the Posterior Parietal Cortex of the Macaque tures may also play a role in time perception (Harrington et al As a first step toward elucidating the repre). Neuron, 2003. Vol. 38, no. 2.pp. 317—327. DOI:10.1016/s0896-6273(03)00185-5
  25. Makioka S. Idiosyncratic spatial representations of the days of the week in individuals without synesthesia. Cognition, 2021. Vol. 207, article ID 104500, 21 p. DOI:10.1016/j.cognition.2020.104500
  26. Winter B., Matlock T., Shaki S., Fischer M. H. Mental number space in three dimensions. Neuroscience and Biobehavioral Reviews, 2015. Vol. 57, pp. 209—219. DOI:10.1016/j.neubiorev.2015.09.005
  27. Anelli F., Peters-Founshtein G., Shreibman Y., Moreh E., Forlani C., Frassinetti F., Arzy S. Nature and nurture effects on the spatiality of the mental time line. Scientific Reports, 2018. Vol. 8, article ID 11710, 10 p. DOI:10.1038/s41598-018- 29584-3
  28. Nourouzi Mehlabani S., Sabaghypour S., Nazari M. A. Number is special: time, space, and number interact in a temporal reproduction task. Cognitive Processing, 2020. Vol. 21, no. 3, pp. 449—459. DOI:10.1007/s10339-020-00968-6
  29. Núñez R. E., Sweetser E. With the future behind them: Convergent evidence from Aymara language and gesture in the crosslinguistic comparison of spatial construals of time. Cognitive science, 2006. Vol. 30, no. 3, pp. 401—450. DOI:10.1207/ s15516709cog0000_62
  30. Velasco C., Adams C., Petit O., Spence C. On the localization of tastes and tasty products in 2D space. Food Quality and Preference, 2019. Vol. 71, pp. 438—446. DOI:10.1016/j.foodqual.2018.08.018
  31. Pacini A. M., Barnard P. J. Exocentric coding of the mapping between valence and regions of space: Implications for embodied cognition. Acta Psychologica, 2021. Vol. 214, article ID 103264, 6 p. DOI:10.1016/j.actpsy.2021.103264
  32. Pitt B., Casasanto D. The correlations in experience principle: How culture shapes concepts of time and number. Journal of Experimental Psychology: General, 2020. Vol. 149, no. 6, pp. 1048—1070. DOI:10.1037/xge0000696
  33. Podwysocki C., Reeve R. A., Forte J. D. The importance of ordinal information in interpreting number/letter line data. Frontiers in Psychology, 2019. Vol. 10, article ID 692, 10 p. DOI:10.3389/fpsyg.2019.00692
  34. Prete G. Spatializing Emotions Besides Magnitudes: Is There a Left-to-Right Valence or Intensity Mapping? Symmetry, 2020. Vol. 12, no. 5, article ID 775, 13 p. DOI:10.3390/sym12050775
  35. Ristic J., Wright A., Kingstone A. The number line effect reflects top-down control. Psychonomic Bulletin & Review, 2006. Vol. 13, no. 5, pp. 862—868. DOI:10.3758/BF03194010
  36. Rodríguez L. “Time is not a line.” Temporal gestures in Chol Mayan. Journal of Pragmatics, 2019. Vol. 151, pp. 1—17. DOI:10.1016/j.pragma.2019.07.003
  37. Sell A. J., Kaschak M. P. Processing time shifts affects the execution of motor responses. Brain and Language, 2011. Vol. 117, no. 1, pp. 39—44. DOI:10.1016/j.bandl.2010.07.003
  38. Prpic V., Soranzo A., Santoro I., Fantoni C., Galmonte A., Agostini T., Murgia M. SNARC-like compatibility effects for physical and phenomenal magnitudes: a study on visual illusions. Psychological Research, 2020. Vol. 84, pp. 950—965. DOI:10.1007/s00426-018-1125-1
  39. Srinivasan M., Carey S. The Long and the Short of it: On the Nature and Origin of Functional Overlap Between Representations of Space and Time. Cognition, 2010. Vol. 116, no. 2, 40 p. DOI:10.1016/j.cognition.2010.05.005
  40. Stavy R., Tirosh D. How Students (Mis-)Understand Science and Mathematics: Intuitive Rules. New York: Teachers’ College Press, 2000, 127 p.
  41. Sun J., Zhang Q. How do Mandarin speakers conceptualize time? Beyond the horizontal and vertical dimensions. Cognitive Processing, 2021. Vol. 22, no. 2, pp. 171—181. DOI:10.1007/s10339-020-00987-3
  42. Teghil A., Marc I. B., Boccia M. Mental representation of autobiographical memories along the sagittal mental timeline: Evidence from spatiotemporal interference. Psychonomic Bulletin & Review, 2021. Vol. 28, no. 4, pp. 1327—1335. DOI:10.3758/s13423-021-01906-z
  43. Myachykov A., Scheepers C., Fischer M. H., Kessler K. TEST: A tropic, embodied, and situated theory of cognition. Topics in Cognitive Science, 2014. Vol. 6, pp. 442—460. DOI:10.1111/tops.12024
  44. Zhao T., He X., Zhao X., Huang J., Zhang W., Wu S., Chen Q. The influence of time units on the flexibility of the spatial numerical association of response codes effect. British Journal of Psychology, 2018. Vol. 109, no. 2, pp. 299—320. DOI:10.1111/bjop.12273
  45. Tillman K. A., Tulagan N., Fukuda E., Barner D. The mental timeline is gradually constructed in childhood. Developmental Science, 2018. Vol. 21. № 6. P. 1—12. DOI:10.1111/desc.12679
  46. Beracci A., Rescott M. L., Natale V., Fabbri M. The vertical space—time association. Quarterly Journal of Experimental Psychology, 2022. Vol. 75(9), pp. 1674—1693. DOI:10.1177/17470218211057031
  47. Leone M. J., Salles A., Pulver A., Golombek D. A., Sigman M. Time drawings: Spatial representation of temporal concepts. Consciousness and Cognition, 2018. Vol. 59, pp. 10—25. DOI:10.1016/j.concog.2018.01.005
  48. Burns P., McCormack T., Jaroslawska A. J., O’Connor P. A., Caruso E. M. Time Points: A Gestural Study of the Development of Space-Time Mappings. Cognitive Science A Multidisciplinary, 2019. Vol. 43, no. 12 Article ID, e12801, 24 p. DOI:10.1111/cogs.12801
  49. Topić V., Stojić S., Domijan D. An implicit task reveals space-time associations along vertical and diagonal axes. Psychological Research, 2022. Vol. 86, 10 p. DOI:10.1007/s00426-021-01561-y
  50. Torralbo A., Santiago J., Lupiáñez J. Flexible conceptual projection of time onto spatial frames of reference. Cognitive science, 2006. Vol. 30, no.pp. 745—757. DOI:10.1207/s15516709cog0000_67
  51. Tversky B., Kugelmass S., Winter A. Cross-cultural and developmental trends in graphic productions. Cognitive Psychology, 1991. Vol. 23, no. 4, pp. 515—557. DOI:10.1016/0010-0285(91)90005-9
  52. Walsh V. A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 2003. Vol. 7, no. 11, pp. 483—488. DOI:10.1016/j.tics.2003.09.002
  53. Spatola N., Santiago J., Beffara B., Mermillod M., Ferrand L., Ouellet M. When the sad past is left: The mental metaphors between time, valence, and space. Frontiers in Psychology, 2018. Vol. 9, article ID 1019, 17 p. DOI:10.3389/fpsyg.2018.01019
  54. Ulrich R., Eikmeier V., de la Vega I., Fernandez S. R., Alex-Ruf S., Maienborn C. With the past behind and the future ahead: Back-to-front representation of past and future sentences. Memory & Cognition, 2012. Vol. 40, pp. 483—495. DOI:10.3758/s13421-011-0162-4
  55. Woodin G., Winter B. Placing abstract concepts in space: Quantity, time and emotional valence. Frontiers in Psychology, 2018. Vol. 9, article ID 2169, 14 p. DOI:10.3389/fpsyg.2018.02169
  56. Xiao C., Zhao M., Chen L. Both Earlier Times and the Future Are “Front”: The Distinction Between Time- and Ego-Reference-Points in Mandarin Speakers’ Temporal Representation. Cognitive science, 2018. Vol. 42, no. 3, pp. 1026— 1040. DOI:10.1111/cogs.12552
  57. Zhang M., Hudson J. A. Children’s understanding of yesterday and tomorrow. Journal of Experimental Child Psychology, 2018. Vol. 170, pp. 107—133. DOI:10.1016/j.jecp.2018.01.010

Information About the Authors

Anastasia S. Malyshevskaya, graduate student, Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia, ORCID:, e-mail:

Federico Gallо, graduate student, Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia, ORCID:, e-mail:

Mikhail Y. Pokhoday, PhD in Psychology, Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, ORCID:, e-mail:

Petr V. Kotrelev, master student, Centre for Cognition and Decision making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia, ORCID:, e-mail:

Yury Y. Shtyrov, PhD, Professor, leading research fellow, Aarhus Universitet, leading research fellow, Centre for Cognition and Decision making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Aarhus, Denmark, ORCID:, e-mail:

Andriy V. Myachykov, PhD, Professor, leading research fellow, Department of Psychology, Northumbria University, leading research fellow, Centre for Cognition and Decision making, Institute for Cognitive Neuroscience, leading research fellow, Centre for Cognition and Decision making, Institute for Cognitive Neuroscience, Newcastle upon Tyne, Great Britain, ORCID:, e-mail:



Total: 273
Previous month: 6
Current month: 2


Total: 71
Previous month: 1
Current month: 2