Determine the Tonality of of News Media Reports by Conceptual Analysis

681

Abstract

The article describes the solution of the task of creating linguistic tools and the methodology of automatic determination of the tonality of news reports related to the quality of life of an ordinary citizen of the Republic of Kazakhstan. The approach for solving the problem was defined, software and methods of automated creation of object dictionaries and evaluation predicate dictionaries, as well as evaluation measure modifier dictionaries were developed. The experiment confirmed the correctness of the proposed methodology for assessing events covered in news reports and the operability of the software complex. This technique, with appropriate selection of event assessment objects, can be used in creating tonal portraits of specific authors on the set of their publications, as well as tonal portraits of various news aggregates on the set of events they cover in a particular time interval.

General Information

Keywords: conceptual analysis, predicate-actant structure, tonality of texts, tonal dictionary, tonality modifiers, automatic establishment of assessment of tonality of texts

Journal rubric: Data Analysis

Article type: scientific article

DOI: https://doi.org/10.17759/mda.2019090405

For citation: Khoroshilov A.A., Kozlovskaya Y.D., Mussabayev R.R., Krassovitsky A.M., Khoroshilov A.A. Determine the Tonality of of News Media Reports by Conceptual Analysis. Modelirovanie i analiz dannikh = Modelling and Data Analysis, 2019. Vol. 9, no. 4, pp. 67–79. DOI: 10.17759/mda.2019090405. (In Russ., аbstr. in Engl.)

References

  1. Pazel’skaya A.G., Solov’ev A.N. Metod opredeleniya emotsii v tekstakh na russkom yazyke. http://www.dialog-21.ru/digests/dialog2011/materials/ru/pdf/50.pdf
  2. Klekovnikova M.V., Kotel’nikov E.V. Metod avtomaticheskoi klassifi katsii tekstov po tonal’nosti, osnovannyi na slovare emotsional’noi leksiki. http://ceur-ws.org/Vol-934/paper15.pdf
  3. Posevkin R.V., Bessmertnyi I.A. Primenenie sentiment analiza tekstov dlya otsenki obshchestvennogo mneniya. Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki, № 1, tom 15, 2015.
  4. Ermakov S.A., Ermakova L.M. Metody otsenki emotsional’noi okraski tekstov. Vestnik permskogo universiteta. Vyp. (1) 9, 2012.
  5. Khoroshilov Al-dr. A., Nikitin Yu.V., Khoroshilov Al-ei. A., Budsko V .I. Avtomaticheskoe sozdanie formalizovannogo predstavleniya smyslovogo soderzhaniya nestrukturirovannykh tekstovykh soobshchenii SMI i sotsial’nykh setei // Sistemy vysokoi dostupnosti, № 3, tom.10, 2014.
  6. Kalinin Yu.P., Khoroshilov Al-dr. A., Khoroshilov Al-ei. A. Sovremennye tekhnologii avtomatizirovannoi obrabotki tekstovoi informatsii // Sistemy vysokoi dostupnosti, № 2, tom.11, 2015.
  7. Budzko V.I., Kalinin Yu.P., Kozerenko E.B., Khoroshilov A.A., Khoroshilov A.A. Mashinnaya grammatika russkogo yazyka // Sistemy vysokoi dostupnosti, № 3, tom.13, 2017.
  8. Kan A.V., Revina V.D., Rusnak V.I., Khoroshilov Al-dr A., Khoroshilov Al-sei A. Avtomaticheskoe formirovanie sintaksicheskoi modeli yazyka dlya zadach mashinnogo perevoda i informatsionnogo poiska. Sb. «Nauchno-tekhnicheskaya informatsiya», Ser. 2, № 12, VINITI, 2018.

Information About the Authors

Aleksander A. Khoroshilov, Doctor of Engineering, Senior programmer, AO ″NPK “VT i SS”″, Moscow, Russia, ORCID: https://orcid.org/0000-0003-4885-3232, e-mail: a.a.horoshilov@mail.ru

Yana D. Kozlovskaya, Student, Institute of Moscow Aviation Institute (National Research University), Moscow, Russia, ORCID: https://orcid.org/0000-0002-1780-5687, e-mail: yana_kozlovskaia@mail.ru

Rustam R. Mussabayev, Head of the laboratory, Institute of Information and Computational Technologies, Kazakhstan, e-mail: rmusab@gmail.com

Aleksandr M. Krassovitsky, PhD in Engineering, lead fellow, Institute of Information and Computational Technologies, Kazakhstan, e-mail: akrassovitskiy@gmail.com

Aleksander A. Khoroshilov, Doctor of Engineering, Senior Research, Central Research Institute of the Ministry of Defence of the Russian Federation, Moscow, Russia, ORCID: https://orcid.org/0000-0001-6641-3105, e-mail: khoroshilov@mail.ru

Metrics

Views

Total: 804
Previous month: 16
Current month: 6

Downloads

Total: 681
Previous month: 3
Current month: 0