Tangible Objectivity With Computer Support

148

Abstract

The article discusses the prospects for the introduction of the idea of connecting material tactile objects designed to familiarize students with mathematical concepts and accompanying these objects of training programs. Thus, the idea of tangible representation with computer support in the educational process was put forward. Computer support of tangible objectivity in any of its forms is a means of achieving the best conditions for self-study by students with visual defects of some questions of mathematics. For this reason, it is desirable to conduct software development in this direction.

General Information

Keywords: tangible objectivity, tangible triangle, study of cycloids

Journal rubric: Method of Teaching

Article type: scientific article

DOI: https://doi.org/10.17759/mda.2019090412

For citation: Kulanin Y.D., Stepanov M.E. Tangible Objectivity With Computer Support. Modelirovanie i analiz dannikh = Modelling and Data Analysis, 2019. Vol. 9, no. 4, pp. 145–156. DOI: 10.17759/mda.2019090412. (In Russ., аbstr. in Engl.)

References

  1. Kulanin E.D., Stepanov M.E. Propedevtika resheniya ehkstremal’nykh zadach v shkol’nom kurse matematiki. Rukopis’.
  2. Kulanin E.D., Stepanov M.E. Rol’ obraznogo myshleniya v nauchnom mysh-lenii. Rukopis’.
  3. Stepanov M.E. Nekotorye voprosy metodiki prepodavaniya vysshei matematiki // Modelirovanie i analiz dannykh. 2017. № 1. S. 54–94.
  4. Stepanov M.E. Iz opyta raboty v oblasti tifl opedagogiki // Modeliro-vanie i analiz dannykh. 2017. № 1. S. 42–53.
  5. Refl eksy golovnogo mozga/ I.M. Sechenov. – Moskva: AST, 2015. – 352 s.
  6. Vennindzher M. Modeli mnogogrannikov. – Moskva: Mir, 1974. – 236 s.
  7. Kuteeva G.A., Sinil’shchikova G. A., Trofi menko B.V. Matematicheskie modeli kataloga Martina Shillinga. Matematika v vysshem obrazovanii. № 15, 2017.
  8. Gil’bert D., Kon-Fossen S., Naglyadnaya geometriya. – Moskva: Nauka, 1981. – 344 s.
  9. Boltyanskii V.G., Efremovich V.A., Naglyadnaya topologiya. – Moskva: Nauka, 1982. – 160 s.
  10. Fransis Dzh. Kniga s kartinkami po topologii. – Moskva: Mir, 1991. – 350 s.
  11. Fomenko A.T. Naglyadnaya geometriya i topologiya: Matematicheskie obrazy v real’nom mire. – Moskva: Izd. MGU, 1998. – 416 s.
  12. Savelov A.A. Ploskie krivye: Sistematika, svoistva, primeneniya. M., LENAND, 2009.
  13. Bogolyubov A.N. Ivan Ivanovich Artobolevskii: 1905–1977. Sozdatel’ sovetskoi nauchnoi shkoly teorii mekhanizmov i mashin. – Moskva: LE-NAND, 2017. – 296 s.
  14. Rademakher G., Teplits O. Chisla i fi gury. – Moskva: Fizmatgiz, 1962. – 263 s.

Information About the Authors

Yevgeny D. Kulanin, PhD in Physics and Matematics, Professor, Moscow State University of Psychology and Education, Moscow, Russia, ORCID: https://orcid.org/0000-0001-6093-7012, e-mail: lucas03@mail.ru

Mikhail E. Stepanov, PhD in Education, Associate Professor, Moscow State University of Psychology and Education, Moscow, Russia, ORCID: https://orcid.org/0000-0003-4803-8211, e-mail: mestepanov@yandex.ru

Metrics

Views

Total: 427
Previous month: 8
Current month: 0

Downloads

Total: 148
Previous month: 2
Current month: 0