Optimal Control in Mathematical Model of Military Subordinating Interaction of Two States

110

Abstract

On the base of constructed earlier by the first author the optimization mathematical model of a military aggressive subordinating interaction of two States the corresponding problem of finding the optimal control in the simplest class of constant controls is solved.

General Information

Keywords: optimization mathematical model of State, optimization mathematical model of military aggressive interaction of two States, target functional, optimal solution

Journal rubric: Mathematical Modelling

Article type: scientific article

DOI: https://doi.org/10.17759/mda.2020100201

For citation: Zakharov V.K., Davidov A.V. Optimal Control in Mathematical Model of Military Subordinating Interaction of Two States. Modelirovanie i analiz dannikh = Modelling and Data Analysis, 2020. Vol. 10, no. 2, pp. 5–24. DOI: 10.17759/mda.2020100201. (In Russ., аbstr. in Engl.)

References

  1. Gusseinova A.S., Pavlovskii Yu.N., Ustinov V.A. Opyt imitatsionnogo modelirovaniya istoricheskogo protsessa. − M.: Nauka, 1984. − 157 p.
  2. Zakharov V.K., Kuzenkov O.A. Optimal’noe upravlenie v modeli gosudarstva. Modelirovanie i analiz dannykh = Modelling and Data Analysis. 2011. № 1. P. 55–75.
  3. Zakharov V.K. Nomologiya. Ustroenie i napravlenie chelovecheskoi deyatel’nosti. − M.: MGPPU, 2011. − 216 p.
  4. Zakharov V.K., Kapitanov D.V., Kuzenkov O.A. Optimal’noe upravlenie v modeli gosudarstva II. Modelirovanie i analiz dannykh = Modelling and Data Analysis. 2014. № 1. P. 4–31.
  5. Zakharov V.K., Kuzenkov O.A. Optimal’noe upravlenie v matematicheskoi modeli gosudarstva. Zhurnal Srednevolzhskogo matematicheskogo obshchestva. 2015. T. 17, № 2. P. 34–38.
  6. Zakharov V.K. Nomologiya. Vosproizvedenie i obnovlenie chelovecheskogo bytiya. − M.: «Onebook. ru», 2016. − 396 p.
  7. Zakharov V.K. Ehtot Novyi Staryi Mir. Budushchee iz proshlogo. − M.: Izdatel’skii dom “Kislorod” 2017. − 448 p.
  8. Zakharov V.K. Dinamicheskaya optimizatsionnaya matematicheskaya model’ voennogo podchinitel’nogo vzaimodeistviya dvukh gosudarstv. Analiz, modelirovanie, upravlenie, razvitie sotsial’no-ehkonomicheskikh sistem: sbornik nauchnykh trudov XIII Vserossiiskoi shkoly-simpoziuma AMUR-2019 (14–27 sentyabrya 2019). – Simferopol’: IP Kornienko, 2019. P. 172–179.
  9. Zakharov V.K. Optimizatsionnaya matematicheskaya model’ mirnogo podchinitel’nogo vzaimodeistviya dvukh gosudarstv. Sovremennye problemy analiza dinamicheskikh sistem. Teoriya i praktika: materialy mezhdunarodnoi otkrytoi konferentsii (21–23 maya 2019g.). − Voronezh: VGLTU, 2019. P. 189–191.
  10. Zakharov V.K. Optimizatsionnye matematicheskie modeli konkurentsii dvukh gosudarstv. Sbornik materialov mezhdunarodnoi konferentsii KROMSh-2019 (17–29 sentyabrya 2019g.). − Simferopol’: POLIPRINT, 2019. P. 260–263.
  11. Zakharov V.K. Mathematical model of the trade-currency subordinating interaction of two states. Sbornik tezisov chetvertoi mezhdunarodnoi konferentsii «Modelirovanie nelineinykh protsessov i sistem» (15–17 oktyabrya 2019g.). M.: Yanus − K, 2019. P. 40–41.
  12. Zakharov V.K. Optimization mathematical models of the peaceful subordinating interactions of two States. Journal of Physics: Conference Series. 2019. V. 1391. Conference 1. 012040. P 1–7.
  13. Zakharov V.K. Optimizatsionnye matematicheskie modeli mirnogo i voennogo podchinitel’nykh vzaimodeistvii dvukh gosudarstv. Modelirovanie i analiz dannykh = Modelling and Data Analysis. 2019. № 2. P. 4–20.

Information About the Authors

Valery K. Zakharov, Doctor of Physics and Matematics, Professor, Professor of the Department of Mathematical Analysis, Lomonosov Moscow State University, Author of Scientific Publications on Conceptual and Mathematical Models of the State and its Institutions. Winner of the Lomonosov Prize, Moscow, Russia, ORCID: https://orcid.org/0000-0002-5492-7317, e-mail: zakharov_valeriy@list.ru

Alexander V. Davidov, Post-Graduate Student of the Department of Mathematical Analysis, Lomonosov Moscow State University, Moscow, Russia, ORCID: https://orcid.org/0000-0003-4949-4171, e-mail: esse101@yandex.ru

Metrics

Views

Total: 299
Previous month: 11
Current month: 7

Downloads

Total: 110
Previous month: 5
Current month: 0