Modelling and Data Analysis
2020. Vol. 10, no. 2, 74–92
doi:10.17759/mda.2020100206
ISSN: 2219-3758 / 2311-9454 (online)
Assessment of Bayesian Ternary Gaze Classification Algorithm (I-BDT)
Abstract
General Information
Keywords: smooth pursuit, classification, Bayesian decision theory, eye movements
Journal rubric: Software
Article type: scientific article
DOI: https://doi.org/10.17759/mda.2020100206
For citation: Zherdev I.Y. Assessment of Bayesian Ternary Gaze Classification Algorithm (I-BDT). Modelirovanie i analiz dannikh = Modelling and Data Analysis, 2020. Vol. 10, no. 2, pp. 74–92. DOI: 10.17759/mda.2020100206. (In Russ., аbstr. in Engl.)
References
- Santini T., Fuhl W., Kübler T., et al. Bayesian identification of fixations, saccades, and smooth pursuits. ACM ETRA. Charleston, 2016. pp. 163–170. DOI:10.1145/2857491.2857512
- Nyström M., Andersson R., Holmqvist K., et al. The influence of calibration method and eye physiology on eyetracking data quality. Behav. Res. Met. 2013. Vol. 45, no 1, pp. 272–288. DOI:10.3758/s13428–012–0247–4
- Hooge I., Holmqvist K., Nyström M. The pupil is faster than the corneal reflection (CR): Are video based pupil-CR eye trackers suitable for studying detailed dynamics of eye movements? Vis. Res. 2016. Vol. 128, pp. 6–18. DOI:10.1016/j.visres.2016.09.002.
- Larsson L., Nyström M., Ardö H., et al. Smooth pursuit detection in binocular eye-tracking data with automatic video-based performance evaluation. J. Vis. 2016. Vol. 16, no 15, pp. 20. DOI:10.1167/16.15.20
- Startsev M., Agtzidis I., Dorr M. 1D CNN with BLSTM for automated classification of fixations, saccades, and smooth pursuits. Behav. Res. Met. 2019. Vol. 51, pp. 556–572. DOI:10.3758/s13428–018–1144–2
- Zemblys R., Niehorster D.C., Komogortsev O., et al. Using machine learning to detect events in eye-tracking data. Behav. Res. Met. 2018. Vol. 50, pp. 160–181. DOI:10.3758/s13428–017–0860–3
- Komogortsev O.V., Karpov A. Automated classification and scoring of smooth pursuit eye movements in the presence of fixations and saccades. Behav. Res. Met. 2013. Vol. 45, pp. 203–215. DOI:10.3758/s13428–012–0234–9
- Komogortsev O. V, Gobert D. V, Jayarathna S., et al. Standartization of automated analyses of oculomotor fixation and saccadic behaviors. IEEE Trans. Biomed. Eng. 2010. Vol. 57, no 11, pp. 2635–2645. DOI:10.1109/tbme.2010.2057429
- Kashyap H.J., Detorakis G., Dutt N., et al. A recurrent neural network based model of predictive smooth pursuit eye movement in primates. IEEE IJCNN. Rio de Janeiro, 2018. pp. 5353–5360. DOI:10.1109/IJCNN.2018.8489652
- Xivry J.J.O. de, Coppe S., Blohm G., et al. Kalman Filtering Naturally Accounts for Visually Guided and Predictive Smooth Pursuit Dynamics. J. Neurosci. 2013. Vol. 33, no 44, pp. 17301–17313. DOI:10.1523/JNEUROSCI.2321–13.2013
Information About the Authors
Metrics
Views
Total: 304
Previous month: 8
Current month: 7
Downloads
Total: 81
Previous month: 2
Current month: 0