The diffusion model of reaction time for recent negative probes



The study investigates the problem of information displacement from short-term memory. In two experiments, reaction times for recent negative probes were analyzed in the Sternberg’s memory scanning task. The diffusion model of reaction times was used with parameters estimated with the fast-dm software. It was found (experiment 1) that recent negative probes are characterized by a reduction in the speed of information accumulation (drift rate). This suggests residual activation of irrelevant cognitive representation in memory after they have been displaced from short-term memory. It was also found (experiment 2) that negative probes semantically related to items in a preceding target set (semantic recent negative probes) are characterized by a similar decrease in the drift rate. This suggests activation spreading from irrelevant cognitive representations displaced from short-term memory along semantic connections and identifies activated long-term memory as the target of information displacement from short-term memory. Additional mechanisms of short-term memory scanning (negative priming and dynamic decision thresholds) are discussed.

General Information

Keywords: short-term memory, activated long-term memory, displacement, memory scanning, recent negative probe, diffusion model, drift rate

Journal rubric: Cognitive Psychology

Article type: scientific article


Funding. The study was financed by RFBR, grant no. 19-013-00806.

For citation: Velichkovsky B.B., Sultanova F.R., Tatarinov D.V., Kachina A.A. The diffusion model of reaction time for recent negative probes. Eksperimental'naâ psihologiâ = Experimental Psychology (Russia), 2020. Vol. 13, no. 1, pp. 35–50. DOI: 10.17759/exppsy.2020130103. (In Russ., аbstr. in Engl.)


  1. Velichkovskii B.B., Nikonova E.Yu., Rumyantsev M.A. Struktura rabochei pamyati: Effekty uvelicheniya kolichestva informatsii, uslozhneniya obrabotki i interferentsii [The structure of working memory: The effects of information load, processing complexity, and interference] // Psikhologicheskii zhurnal [Psychological journal]. 2015. V. 36, N. 3. P. 38—48. (In Russian; abstract in English).
  2. Anderson J.R. A spreading activation theory of memory // Journal of Verbal Learning and Verbal Behavior. 1983. V. 22. P. 261—295. doi: 10.1016/S0022-5371(83)90201-3
  3. Arnold N.R., Broder A., Bayen U.E. Empirical validation of the diffusion model for recognition memory and a comparison of parameter-estimation methods // Psychological Research. 2015. V. 79. P. 882—898. doi: 10.1007/s00426-014-0608-y
  4. Aschenbrenner A., Balota D.A., Gordon B., Ratcliff R., Morris J.C. A diffusion model analysis of episodic recognition in preclinical individuals with a family history for Alzheimer’s disease: The Adult Children study // Neuropsychology. 2015. V. 30. P. 225—238. doi: 10.1037/neu0000222
  5. Atkinson R.C., Shiffrin R.M. Human memory: A proposed system and its control processes // The psychology of learning and motivation / K.W. Spence, J.T. Spence (eds.). New York: Academic Press. 1968. V. 2. P. 89—195. doi: 10.1016/S0079-7421(08)60422-3
  6. Beaman, С.P., Jones, D.M. The Item versus the Object in Memory: On the Implausibility of Overwriting As a Mechanism for Forgetting in Short-Term Memory // Frontiers in Psychology. 2016. V. 7. P. 341. doi: 10.3389/fpsyg.2016.00341
  7. Bunting M. Proactive interference and item similarity in working memory // Journal of Experimental Psychology: Learning, Memory, and Cognition. 2006. V. 32. N. 2. P. 183—196. doi: 10.1037/0278-7393.32.2.183
  8. Crowder, R. G., Morton, J. Precategorical acoustic storage (PAS) // Perception & Psychophysics. 1969. V. 5. P. 365—373. doi: 10.3758/BF03210660
  9. Donkin C., Nosofsky R.M. The structure of short-term memory scanning: an investigation using response time distribution models // Psychonomic Bulletin and Review. 2012. V. 19. P. 363—394. doi: 10.3758/ s13423-012-0236-8
  10. Engle R. Working Memory Capacity as Executive Attention // Current Directions in Psychological Science. 2002. V. 11. P. 19—23. doi: 10.1111/1467-8721.00160
  11. Meier B., Morger V., Graf P. Competition between automatic and controlled processes // Consciousness and Cognition. 2003. V. 12. N. 2. P. 309—319. doi: 10.1016/S1053-8100(02)00069-7
  12. Monsell S. Recency, immediate recognition, and reaction time // Cognitive Psychology. 1978. V. 10. P. 465—501. doi: 10.1016/0010-0285(78)90008-7
  13. Murdock B.B. Recent developments in short-term memory // British Journal of Psychology. V. 58. I. 3—4. P. 421—433. doi: 10.1111/j.2044-8295.1967.tb01099.x
  14. Ratcliff R. A theory of memory retrieval // Psychological Review. 1978. V. 85. P. 59—108. doi: 10.1037/0033-295X.85.2.59
  15. Ratcliff R., McKoon G. The Diffusion Decision Model: Theory and Data for Two-Choice Decision Tasks // Neural Computation. 2008. V. 20. N. 4. P. 873—922. doi: 10.1162/neco.2008.12-06-420
  16. Ratcliff R., Tharap A., McKoon G. A diffusion model analysis of the effects of aging on recognition memory // Journal of Memory and Language. 2004. V. 50. P. 408—424. doi: 10.1037/0882-7974.19.2.278
  17. Ratcliff R., Childers R. Individual Differences and Fitting Methods for the Two-Choice Diffusion Model of Decision Making // Decision. 2015. V. 2. P. 237—279. doi: 10.1037/dec0000030
  18. Sternberg S. Memory scanning: Mental processes revealed by reaction-time experiments // American Scientist. 1969. V. 4. P. 421—457.
  19. Tipper S.P. The negative priming effect: Inhibitory priming by ignored objects // The Quarterly Journal of Experimental Psychology Section A. 1985. V. 37. P. 571—590. doi: 10.1080/14640748508400920
  20. Voss A., Voss J. Fast-dm: A free program for efficient diffusion model analysis // Behavioral Research Methods. 2007. V. 39. N. 4. P. 767—775. doi: 10.3758/BF0319296
  21. Voss A., Nagler M., Lerche V. Diffusion models in experimental psychology: a practical introduction // Experimental Psychology. 2013. V. 60. P. 385—402. doi: 10.1027/1618-3169/a000218
  22. Voss A., Rothermund K., Gast A., Wentura D. Cognitive processes in associative and categorical priming: A diffusion model analysis // Journal of Experimental Psychology: General. 2013. V. 142. N. 2. P. 536—559. doi: 10.1037/a0029459
  23. Waugh, N. C., & Norman, D. A. Primary memory // Psychological Review. 1965. V. 72. N. 2. P. 89—104. doi: 10.1037/h0021797

Information About the Authors

Boris B. Velichkovsky, Doctor of Psychology, Professor, Chair of Methodology of Psychology, Lomonosov Moscow State University, Professor, Chair of General Psychology, Moscow Institute of Psychoanalysis, Moscow, Russia, ORCID:, e-mail:

Faniya R. Sultanova, Senior Lecturer, Chair of Neuro- and Pathological Psychology, Moscow State University, Moscow, Russia, ORCID:, e-mail:

Dmitry V. Tatarinov, Master Student, Department of Psychology, Moscow State University, Moscow, Russia, ORCID:, e-mail:

Anastasia A. Kachina, PhD in Psychology, Senior Researcher, Laboratory of Work Psychology, Moscow State University, Moscow, Russia, ORCID:, e-mail:



Total: 989
Previous month: 8
Current month: 0


Total: 378
Previous month: 2
Current month: 0