Experimental Psychology (Russia)
2020. Vol. 13, no. 2, 72–89
doi:10.17759/exppsy.2020130206
ISSN: 2072-7593 / 2311-7036 (online)
The Order of Information Transfer into Short- Term Memory from Visual Pathways with Different Spatial-Frequency Tunings
Abstract
General Information
Keywords: face, spatial frequency, sequence, short-term memory
Journal rubric: Cognitive Psychology
Article type: scientific article
DOI: https://doi.org/10.17759/exppsy.2020130206
Funding. This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project № 25.3336.2017/Project Part).
For citation: Alekseeva D.S., Babenko V.V., Yavna D.V. The Order of Information Transfer into Short- Term Memory from Visual Pathways with Different Spatial-Frequency Tunings. Eksperimental'naâ psihologiâ = Experimental Psychology (Russia), 2020. Vol. 13, no. 2, pp. 72–89. DOI: 10.17759/exppsy.2020130206. (In Russ., аbstr. in Engl.)
References
- Barabanschikov V.A., Zhegallo A.V., Ivanova L.A. Raspoznavanie ekspressii perevernutogo izobrazheniya litsa [Recognition of expression of inverted face image] // Eksperimental’naia psikhologiia [Experimental Psychology (in Russia)]. 2010, Vol. 3, № 3. P. 66—83. (In Russ.).
- Shelepin Y. E. Vvedenie v neiroikoniku [Introduction to Neuroiconics]. St. Petersburg: Troitskii most Publ., 2017. 352 p. (In Russ.).
- Arsenault E., Yoonessi A., Baker C. Higher order texture statistics impair contrast boundary segmentation // J Vis. 2011. Vol. 11. № 10. P. 14. doi:10,1167/11.10,14
- Ashby F.G. Multidimensional models of perception and cognition. Psychology Press, 2014. 544 p.
- Behrmann M., Richler J.J., Avidan G., et al. Holistic face perception // Oxford handbook of perceptual organization. 2015. P. 758—774.
- Boulkenafet Z., Komulainen J., Hadid A. Face Spoofing Detection Using Colour Texture Analysis // IEEE Transactions on Information Forensics and Security. 2016. Vol. 11. № 8. P. 1818—1830, doi:10,1109/ TIFS.2016.2555286
- Brown C., Portch E., Skelton F.C., et al. The impact of external facial features on the construction of facial composites // Ergonomics. 2019. P. 1—18. doi:10,1080/00140139.2018.1556816
- Carbon C.-C., Leder H. When feature information comes first! Early processing of inverted faces. // Perception. 2005. Vol. 34. № 9. P. 1117—1134. doi:10,1068/p5192
- Carrasco M., Penpeci-Talgar C., Eckstein M. Spatial covert attention increases contrast sensitivity across the CSF: support for signal enhancement // Vision Res. 2000. Vol. 40. № 10—12. P. 1203—1215.
- Chaudhuri R., Fiete I. Computational principles of memory // Nat. Neurosci. 2016. Vol. 19, № 3. P. 394— 403. doi:10,1038/nn.4237
- Cohen E.H., Schnitzer B.S., Gersch T.M., et al. The relationship between spatial pooling and attention in saccadic and perceptual tasks // Vision Res. 2007. Vol. 47. № 14. P. 1907—1923. doi:10,1016/j. visres.2007.03.018
- Collin C.A., Rainville S., Watier N., et al. Configural and featural discriminations use the same spatial frequencies: a model observer versus human observer analysis // Perception. 2014. Vol. 43. № 6. P. 509— 526. doi:10,1068/p7531
- Collin C.A., Therrien M., Martin C., et al. Spatial frequency thresholds for face recognition when comparison faces are filtered and unfiltered // Percept Psychophys. 2006. Vol. 68. № 6. P. 879—889.
- Dimitriou D., Leonard H.C., Karmiloff-Smith A., et al. Atypical development of configural face recognition in children with autism, Down syndrome and Williams syndrome // J Intellect Disabil Res. 2015. Vol. 59, № 5. P. 422—438. doi:10,1111/jir.12141
- Finzi R.D., Susilo T., Barton J.J.S., et al. The role of holistic face processing in acquired prosopagnosia: evidence from the composite face effect // Visual Cognition. 2016. Vol. 24. № 4. P. 304—320, doi:10,1080/ 13506285.2016.1261976
- Gao Z., Bentin S. Coarse-to-fine encoding of spatial frequency information into visual short-term memory for faces but impartial decay // J Exp Psychol Hum Percept Perform. 2011. Vol. 37. № 4. P. 1051—1064. doi:10,1037/a0023091
- Gaspar C., Sekuler A.B., Bennett P.J. Spatial frequency tuning of upright and inverted face identification. // Vision Res. 2008. Vol. 48, № 28. P. 2817—2826. doi:10,1016/j.visres.2008.09.015
- Gold J., Bennett P.J., Sekuler A.B. Identification of band-pass filtered letters and faces by human and ideal observers. // Vision Res. 1999. Vol. 39. № 21. P. 3537—3560, doi:10,1016/S0042-6989(99)00080-2
- Hayward W.G., Crookes K., Chu M.H., et al. Holistic processing of face configurations and components // J Exp Psychol Hum Percept Perform. 2016. Vol. 42. № 10, P. 1482—1489. doi:10,1037/xhp0000246
- Jennings B.J., Yu Y., Kingdom F.A.A. The role of spatial frequency in emotional face classification // Atten Percept Psychophys. 2017. Vol. 79. № 6. P. 1573—1577. doi:10,3758/s13414-017-1377-7
- Johnson A.P., Prins N., Kingdom F.A.A., et al. Ecologically valid combinations of first- and second-order surface markings facilitate texture discrimination // Vision Res. 2007. Vol. 47. № 17. P. 2281—2290, doi:10,1016/j.visres.2007.05.003
- Kamps F.S., Morris E.J., Dilks D.D. A face is more than just the eyes, nose, and mouth: fMRI evidence that face-selective cortex represents external features // Neuroimage. 2019. Vol. 184. P. 90—100, doi:10,1016/j. neuroimage.2018.09.027
- Kauffmann L., Chauvin A., Guyader N., et al. Rapid scene categorization: role of spatial frequency order, accumulation mode and luminance contrast. // Vision Res. 2015. Vol. 107. P. 49—57. doi:10,1016/j.visres.2014.11.013
- Musel B., Kauffmann L., Ramanoël S., et al. Coarse-to-fine categorization of visual scenes in scene-selective cortex // J Cogn Neurosci. 2014. Vol. 26. № 10, P. 2287—2297. doi:10,1162/jocn_a_00643
- Näsänen R. Spatial frequency bandwidth used in the recognition of facial images // Vision Research. 1999. Vol. 39. № 23. P. 3824—3833. doi:10,1016/S0042-6989(99)00096-6
- Olzak L.A., Thomas J.P. Neural recoding in human pattern vision: model and mechanisms // Vision Res. 1999. Vol. 39. № 2. P. 231—256.
- Ouyang S., Hospedales T.M., Song Y.-Z., et al. ForgetMe№t: Memory-Aware Forensic Facial Sketch Matching // The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016. P. 5571— 5579.
- Parker D.M., Costen N.P. One extreme or the other or perhaps the golden mean? Issues of spatial resolution in face processing // Current Psychology. 1999. Vol. 18. № 1. P. 118—127. doi:10,1007/s12144-999-1021-3
- Peli E., Lee E., Trempe C.L., et al. Image enhancement for the visually impaired: the effects of enhancement on face recognition. // J Opt Soc Am A Opt Image Sci Vis. 1994. Vol. 11. № 7. P. 1929—1939.
- Peters J.C., Vlamings P., Kemner C. Neural processing of high and low spatial frequency information in faces changes across development: qualitative changes in face processing during adolescence // Eur. J. Neurosci. 2013. Vol. 37. № 9. P. 1448—1457. doi:10,1111/ejn.12172
- Petras K., Ten Oever S., Jacobs C., et al. Coarse-to-fine information integration in human vision // Neuroimage. 2019. Vol. 186. P. 103—112. doi:10,1016/j.neuroimage.2018.10,086
- Ramon M., Vizioli L., Liu-Shuang J., et al. Neural microgenesis of personally familiar face recognition // Proc. Natl. Acad. Sci. U.S.A. 2015. Vol. 112. № 35. P. E4835-4844. doi:10,1073/pnas.1414929112
- Rohr M., Tröger J., Michely N., et al. Recognition memory for low- and high-frequency-filtered emotional faces: Low spatial frequencies drive emotional memory enhancement, whereas high spatial frequencies drive the emotion-induced recognition bias // Mem Cognit. 2017. Vol. 45. № 5. P. 699—715. doi:10,3758/s13421- 017-0695-2
- Royer J., Willenbockel V., Blais C., et al. The influence of natural contour and face size on the spatial frequency tuning for identifying upright and inverted faces // Psychol Res. 2017. Vol. 81. № 1. P. 13—23. doi:10,1007/s00426-015-0740-3
- Ruiz-Soler M., Beltran F.S. Face perception: an integrative review of the role of spatial frequencies // Psychol Res. 2006. Vol. 70, № 4. P. 273—292. doi:10,1007/s00426-005-0215-z
- Sakai K., Inui T. A feature-segmentation model of short-term visual memory. // Perception. 2002. Vol. 31. № 5. P. 579—589. doi:10,1068/p3320
- Tanaka J.W., Sung A. The «Eye Avoidance» Hypothesis of Autism Face Processing // J Autism Dev Disord. 2016. Vol. 46. № 5. P. 1538—1552. doi:10,1007/s10803-013-1976-7
- Thomas S.R., Barsalou N. Applying Human Spatial Vision Models to Real-World Target Detection and Identification: A Test of the Wilson Model // Vision Models For Target Detection And Recognition: In Memory of Arthur Menendez. World Scientific, 1995. P. 219—244.
- Tobin A., Favelle S., Palermo R. Dynamic facial expressions are processed holistically, but not more holistically than static facial expressions // Cogn Emot. 2016. Vol. 30. № 6. P. 1208—1221. doi:10,1080/02 699931.2015.1049936
- Van Rheenen T.E., Joshua N., Castle D.J., et al. Configural and Featural Face Processing Influences on Emotion Recognition in Schizophrenia and Bipolar Disorder // J Int Neuropsychol Soc. 2017. Vol. 23. № 3. P. 287—291. doi:10,1017/S1355617716001211
- Williams N.R., Willenbockel V., Gauthier I. Sensitivity to spatial frequency and orientation content is not specific to face perception. // Vision Res. 2009. Vol. 49. № 19. P. 2353—2362. doi:10,1016/j. visres.2009.06.019
- Wilson H.R., Gelb D.J. Modified line-element theory for spatial-frequency and width discrimination. // J Opt Soc Am A. 1984. Vol. 1. № 1. P. 124—131.
Information About the Authors
Metrics
Views
Total: 581
Previous month: 4
Current month: 0
Downloads
Total: 247
Previous month: 3
Current month: 0