Students’ Dynamics of Heart Rate Variability during Virtual Reality Class



The article presents the results of a study of the dynamics of the characteristics of heart rate variability in the learning process in high-level virtual reality and behind a computer monitor. The continuous dynamics of the heart rate of senior and junior students (N=16, 8 — female, 8 — male, age from 18 to 22) was recorded at rest (sitting, in silence, with eyes closed) and during two short lessons in biology and mathematics in different conditions. After the training programs (classes), students were offered test questions on the materials they had listened to and a questionnaire for the subjective assessment of the lesson information in terms of the degree of novelty, complexity, clarity of the material, etc. It was shown that the dynamics of the functional state does not differ between lessons, the degree of activation and tension in terms of HRV increased equally when practicing in virtual reality and behind a computer monitor compared to the background. At the same time, after working in training programs in virtual reality, the students demonstrated a greater number of correct answers to test questions and evaluated the information in them as newer and more complex, compared to the lessons at the computer monitor. The conclusion is made about the effectiveness of the use of virtual reality technologies in education, as students demonstrate higher results with the same level of tension and activity.

General Information

Keywords: virtual reality, training, heart rate variability

Journal rubric: Psychology of Digital Reality

Article type: scientific article


Funding. The study was carried out within the framework of the state task of the Ministry of Education of the Russian Federation No. 073-00110-22-02 dated 04/08/2022 "The impact of high-level virtual reality technologies on mental development in adolescence".

Acknowledgements. The authors are grateful for assistance in data collection S. Pavlova.

Received: 11.02.2022


For citation: Bakhchina A.V., Strizhova I.V. Students’ Dynamics of Heart Rate Variability during Virtual Reality Class. Eksperimental'naâ psihologiâ = Experimental Psychology (Russia), 2022. Vol. 15, no. 2, pp. 59–69. DOI: 10.17759/exppsy.2022150205. (In Russ., аbstr. in Engl.)


  1. Anikina V.G., Hoze E.G., Strizhova I.V. Dinamika psihicheskih sostoyanij obuchayushchihsya, osvaivayushchih didakticheskie VR-programmy s ispol’zovaniem tekhnologij virtual’noj real’nosti // Eksperimental’naya psihologiya. 2021. V. 14. № 4. P. 123—141. DOI: 10.17759/exppsy.2021140407 (In Russ.).
  2. Baevskij R.M. Analiz variabel’nosti serdechnogo ritma: istoriya i filosofiya, teoriya i praktika // Klinicheskaya informatika i telemedicina = Modern technologies in medicine. V. 1. № 1. P. 54—64. (In Russ.).
  3. Mashin V.A. K voprosu klassifikacii funkcional’nyh sostoyanij cheloveka // Eksperimental’naya psihologiya = Experimental psychology. V. 4. № 1. P. 40—56. (In Russ.).
  4. Polevaya S.A., Runova E.V., Nekrasova M.M., Fedotova I.V., Koval’chuk A.V., Bahchina A.V., SHishalov I.S., Parin S.B. Telemetricheskie i informacionnye tekhnologii v diagnostike funkcional’nogo sostoyaniya sportsmenov // Sovremennye tekhnologii v medicine = Modern technologies in medicine. 2012. № 4. P. 94—98. (In Russ.).
  5. Runova E.V., Grigor’eva V.N., Bahchina A.V., Parin S.B., SHishalov I.S., Kozhevnikov V.V., Nekrasova M.M., Karatushina D.I., Grigor’eva K.A., Polevaya S.A. Vegetativnye korrelyaty proizvol’nyh otobrazhenij emocional’nogo stressa // Sovremennye tekhnologii v medicine = Modern technologies in medicine. 2013. V. 5. № 4. P. 69—77. (In Russ.).
  6. Selivanov V.V. Psihicheskie sostoyaniya lichnosti v didakticheskoj vr-srede // Eksperimental’naya psihologiya. 2021. V. 14. № 1. P. 20—28. DOI: 10.17759/exppsy.2021000002 (In Russ.).
  7. Borell E., Langbein J., Despres G., Hensen S., Leterrier C., Marchant-Forde J., Marchant-Forde R., Minero M., Mohr E., Prunier A., Valance D., Veissier I. Heart rate variability as a measure of autonomic regulation of cardiac activity for assessing stress and welfare in farm animals — a review // Physiology and behavior. № 92. P. 293—316.
  8. Clifford R.M., Jung S., Hoermann S., Billinghurst M., Lindeman R.W. Creating a stressful decision making environment for aerial firefighter training in virtual reality // IEEE Conference on Virtual Reality and 3D User Interfaces (VR). P. 181—189.
  9. Felnhofer A., Kothgassner O. D., Schmidt M., Heinzle A. K., Beutl L., Hlavacs H., Kryspin-Exner I. Is virtual reality emotionally arousing? Investigating five emotion inducing virtual park scenarios // International Journal of Human-Computer Studies. № 82. P. 48—56.
  10. Makowski D., Pham T., Lau Z.J., Brammer J C., Lespinasse F., Pham H. NeuroKit2: a python toolbox for neurophysiological signal processing // Res. Methods. 2021. № 53. P. 1689—1696. DOI: 10.3758/ s13428-020-01516-y
  11. Malik M., Bigger J.T., Camm A.J., Kleiger R.E., Malliani A., Moss A.J., Schwartz P.J. Heart rate variability Standards of measurement, physiological interpretation, and clinical use Task Force of The European Society of Cardiology and The North American Society of Pacing and Electrophysiology (Membership of the Task Force listed in the Appendix) // European Heart Journal. № 17. P. 354—381.
  12. Pallavicini F., Orena E., di Santo S., Greci L., Caragnano C., Ranieri P., Vuolato C., Pepe A., Veronese G., Dakanalis A., Rossini A., Caltagirone C., Clerici M., Mantovani F. MIND-VR: Design and Evaluation Protocol of a Virtual Reality Psychoeducational Experience on Stress and Anxiety for the Psychological Support of Healthcare Workers Involved in the COVID-19 Pandemic // Front in Virtual Reality. № 2: е620225.
  13. Piskorz J., Czub M. Effectiveness of a virtual reality intervention to minimize pediatric stress and pain intensity during venipuncture // Journal for Specialists in Pediatric Nursing. № 23: e12201.
  14. Polevaya S.A., Eremin E.V., Bulanov N.A., Bakhchina А.V., Kovalchuk A.V., Parin S.B. Event-related telemetry of heart rhythm for personalized remote monitoring of cognitive functions and stress under conditions of everyday activity // Modern technologies in medicine. V. 11. № 1. P. 109—115.
  15. Porges S.W. The polyvagal theory: phylogenetic contributions to social behavior // Physiology and Behavior. № 79. P. 503—513.
  16. Richman J. S., Moorman J. R. Physiological time-series analysis using approximate entropy and sample entropy // J. Physiol. Heart Circ. Physiol. 2000. № 278. P. 2039—2049. DOI: 10.1152/ ajpheart.2000.278.6.H2039
  17. Slobounov S.M., Ray W., Johnson B., Slobounov E., Newell K.M. Modulation of cortical activity in 2D versus 3D virtual reality environments: an EEG study // International Journal of Psychophysiology. № 95. P. 254—260.
  18. Thayer J.F., Lane R.D. A model of neurovisceral integration in emotion regulation and dysregulation // Affect. Disord. 2000. № 61. P. 201—216.
  19. von Borell E., Langbein J., Després G., Hansen S., Leterrier C., Marchant-Forde J., Marchant-Forde R., Minero M., Mohr E., Prunier A., Valance D., Veissier I. Heart rate variability as a measure of autonomic regulation of cardiac activity for assessing stress and welfare in farm animals — A review // Physiology & Behavior. № 92. P. 293—316.
  20. Wolitzky K., Fivush R., Zimand E., Hodges L., Rothbaum B.O. Effectiveness of virtual reality distraction during a painful medical procedure in pediatric oncology patients // Psychology and Health. № 20. P. 817—824.

Information About the Authors

Anastasya V. Bakhchina, PhD in Psychology, Researcher, Institute of Psychology, RAS, scientific researcher, Department of psychophysiology, Nizhny Novgorod State University named N.I. Lobachevsky, Nizhniy Novgorod, Russia, ORCID:, e-mail:

Irina V. Strizhova, PhD in Education, Associate Professor Chair of General Psychology, Institute of Experimental Psychology, Moscow State University of Psychology and Education, Moscow, Russia, ORCID:, e-mail:



Total: 540
Previous month: 28
Current month: 16


Total: 175
Previous month: 3
Current month: 2